Titanium alloy porous scaffolds possess excellent mechanical properties and biocompatibility, making them promising for applications in bone tissue engineering. The integration of triply periodic minimal surface (TPMS) with porous scaffolds provides a structural resemblance to the trabecular and cortical bone structures of natural bone tissue, effectively reducing stress-shielding effects, enabling the scaffold to withstand complex stress environments, and facilitating nutrient transport. In this study, we designed fused porous scaffolds based on the Gyroid and Diamond units within TPMS and fabricated samples using selective laser melting technology. The effects of the rotation direction and angle of the inner-layer G unit on the elastic modulus of the fused TPMS porous scaffold were investigated through quasi-static compression experiments. Furthermore, the influence of the rotation direction and angle of the inner-layer G unit on the permeability, pressure, and flow velocity of the fused TPMS porous scaffold structure was studied using computational fluid dynamics (CFD) based on the Navier-Stokes model. The quasi-static compression experiment results demonstrated that the yield strength of the fused TPMS porous scaffold ranged from 367.741 to 419.354 MPa, and the elastic modulus ranged from 10.617 to 11.252 GPa, exhibiting stable mechanical performance in different loading directions. The CFD simulation results indicated that the permeability of the fused TPMS porous scaffold model ranged from 5.70015 × 10 to 6.33725 × 10 m. It can be observed that the fused porous scaffold meets the requirements of the complex stress-bearing demands of skeletal structures and complies with the permeability requirements of human bone tissue.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsbiomaterials.3c00214 | DOI Listing |
Bioact Mater
April 2025
Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
Human long bones exhibit pore size gradients with small pores in the exterior cortical bone and large pores in the interior cancellous bone. However, most current bone tissue engineering (BTE) scaffolds only have homogeneous porous structures that do not resemble the graded architectures of natural bones. Pore-size graded (PSG) scaffolds are attractive for BTE since they can provide biomimicking porous structures that may lead to enhanced bone tissue regeneration.
View Article and Find Full Text PDFGels
November 2024
Departamento de Química, Facultad de Ciencias Naturales, Matemáticas y del Medio Ambiente, Universidad Tecnológica Metropolitana, Santiago 7800003, Chile.
The preparation of sophisticated hierarchically structured and cytocompatible hydrogel scaffolds is presented. For this purpose, a photosensitive resin was developed, printability was evaluated, and the optimal conditions for 3D printing were investigated. The design and fabrication by additive manufacturing of tailor-made porous scaffolds were combined with the formation of surface wrinkled micropatterns.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
December 2024
Centre for Precision Engineering Material and Manufacturing Research (PEM Research Centre), Atlantic Technological University, Ash Lane, Sligo, F91 YW50, Ireland; School of Mechanical Engineering, Technological University Dublin, Dublin, Ireland.
Med Eng Phys
October 2024
Loughborough University, Loughborough, Leicestershire LE11 3TU, UK.
ACS Biomater Sci Eng
November 2024
Key Laboratory of Hunan Province for Efficient Power System and Intelligent Manufacturing, College of Mechanical and Energy Engineering, Shaoyang University, Shaoyang 422000, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!