The reaction between diphosphorus derivatives [( Im )P (Dipp)]OTf (1[OTf]) and [( Im )P (Dipp)Cl] (1[Cl]) with the cyclotetraphosphido cobalt complex [K(18c-6)][(PHDI)Co(η -cyclo-P )] (2) leads to the formation of complex [(PHDI)Co{η -cyclo-P (Dipp)( Im )}] (3), which features an unusual hexaphosphido ligand [ Im =4,5-dichloro-1,3-bis(2,6-diisopropylphenyl)imidazol-2-yl, Dipp=2,6-diisopropylphenyl, 18c-6=18-crown-6, PHDI=bis(2,6-diisopropylphenyl)phenanthrene-9,10-diimine]. Complex 3 was obtained as a crystalline material with a moderate yield at low temperature. Upon exposure to ambient temperature, compound 3 slowly transforms into two other compounds, [K(18c-6)][(PHDI)Co(η -P Dipp)] (4) and [(PHDI)Co{cyclo-P ( Im )}] (5). The novel complexes 3-5 were characterized using multinuclear NMR spectroscopy and single-crystal X-ray diffraction. To shed light on the formation of these compounds, a proposed mechanism based on P NMR monitoring studies is presented.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.202301930 | DOI Listing |
Materials (Basel)
December 2024
Chemistry Institute, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Ciudad Universitaria, Ciudad de México 04510, Mexico.
In this work, we present the green synthesis of complex - derived from β-hidroxymethylidene indanones by ultrasound, which allowed for the obtaining of compounds in a shorter time and with good yields. These organotin complexes were then doped with cobalt porphine and incorporated into a poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) matrix to manufacture composite semiconductor films. The semiconductor films were characterized through atomic force microscopy, examining their topography, Knoop hardness (around 17 HK), and tensile strength, which varied from 5 × 10 to 7 × 10 Pa.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Chemistry, University of Zurich, Zurich, Switzerland.
The complexity of the intrinsic oxygen evolution reaction (OER) mechanism, particularly the precise relationships between the local coordination geometry of active metal centers and the resulting OER kinetics, remains to be fully understood. Herein, we construct a series of 3 d transition metal-incorporated cobalt hydroxide-based nanobox architectures for the OER which contain tetrahedrally coordinated Co(II) centers. Combination of bulk- and surface-sensitive operando spectroelectrochemical approaches reveals that tetrahedral Co(II) centers undergo a dynamic transformation into highly active Co(IV) intermediates acting as the true OER active species which activate lattice oxygen during the OER.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States.
Monoanionic, bidentate-auxiliary-directed, cobalt-catalyzed C-H bond functionalization has become a very useful tool in organic synthesis. A comprehensive investigation into isolated organometallic intermediates and their reactivity within the catalytic cycle is lacking. We report here mechanistic studies of cobalt-catalyzed, aminoquinoline-directed C(sp)-H bond functionalization.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
IISER Kolkata: Indian Institute of Science Education and Research Kolkata, Department of Chemical Sciences, Mohanpur, 741246, Nadia, INDIA.
Chiral allyl amines are important structural components in natural products, pharmaceuticals, and chiral catalysts. Herein, we report a cobalt-catalyzed enantioselective reductive coupling of imines with internal alkynes to synthesize chiral allyl amines. The reaction is catalyzed by a cobalt complex derived from commercially available bisphosphine ligand utilizing zinc as the electron donor.
View Article and Find Full Text PDFActa Crystallogr E Crystallogr Commun
January 2025
A novel coordination compound, [Co()(HO)], was synthesized from aqueous solutions of Co(NO) and the ligand 2-[(5-methyl-1,3,4-thia-diazol-2-yl)sulfan-yl]acetic acid (H, CHNOS). In the monoclinic crystals (space group 2/), the cobalt(II) ion is located about a centre of symmetry and is octa-hedrally coordinated by two anions in a monodentate fashion through carboxyl O atoms and by four water mol-ecules. A relatively strong hydrogen bond between one of the water mol-ecules and the non-coordinating carboxyl-ate O atom consolidates the conformation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!