Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Endogenous volatile organic compounds (VOCs) in human exhaled gases can reflect human health status and be used for clinical diagnosis and health monitoring. Acetone is the sign VOC gases of diabetes mellitus. In order to find a potential material for the detection of acetone in the application of the clinical diagnosis of diabetes mellitus. The adsorption properties, including adsorption energy, adsorption distance, charge transfer, density of states, electron localization function and electrons density difference, of acetone on BN monolayer doped with Ni were comprehensively investigated based on density functional theory. The results show that there could be chemisorption between acetone and Ni-BN monolayer and Ni-BN monolayer is probably suitable gas sensitive material for the detection of acetone in the application of diabetes mellitus monitoring and clinical diagnosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/acea29 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!