Besides recurrently assessed water-based parameters, there are also some individual characteristics that affect swimming performance that are not water related. In the past few years, dynamic balance has been associated with land sports performance. Conversely, evidence on this topic in swimming is scarce. The purpose of this study was to assess the association between on-land dynamic balance and swimming performance. Sixteen young adults and recreational swimmers were recruited for the present study (8 males 20.8 ± 2.0 years, and 8 females 20.1 ± 1.9 years). A set of anthropometric features were measured. The upper quarter Y-balance test was selected as a dynamic balance outcome, and swimming speed as the swimming performance indicator. The results showed a moderate and positive correlation between dynamic balance and swimming performance ( < 0.05). Speed fluctuation was highly and negatively related to swimming speed ( < 0.001), i.e., swimmers who had higher scores in the dynamic balance were more likely to deliver better performances. This suggests that in recreational swimmers, the stability and mobility of the upper extremity had a greater influence on swimming performance. Therefore, swimming instructors are advised to include dynamic balance exercises in their land-based training sessions to improve their swimmers' performance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10366733 | PMC |
http://dx.doi.org/10.3390/jfmk8030096 | DOI Listing |
Phys Chem Chem Phys
January 2025
Institute of Science and Technology, Federal University of São Paulo, 12247-014, São José dos Campos, São Paulo, Brazil.
This study investigates the structural and dynamic properties of ternary mixtures composed of NaPF, ethylene carbonate (EC), and the ionic liquid choline glycine (ChGly), with a focus on their potential as electrolytes for supercapacitors. The combination of NaPF-EC, known for its high ionic conductivity, with the biodegradable and environmentally friendly ChGly offers a promising approach to enhancing electrolyte performance. Through molecular simulations, we analyze how the inclusion of small concentrations of ChGly affects key properties such as density, cohesive energy, and ion mobility.
View Article and Find Full Text PDFJ Phys Ther Sci
January 2025
Department of Physical Therapy, Graduate School of International University of Health and Welfare: 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan.
[Purpose] The Y Balance test is a dynamic balance assessment tool widely used in sports. Although its reliability has been established in professional male athletes, its suitability for female high-school athletes remains unclear. Therefore, this study aimed to evaluate the reliability of the Y Balance test in this population.
View Article and Find Full Text PDFPostmenopausal osteoporosis is a chronic inflammatory disease characterized by decreased bone mass and increased bone fracture risk. Estrogen deficiency during menopause plays a major role in post-menopausal osteoporosis by influencing bone, immune, and gut cell activity. In the gut, estrogen loss decreases tight junction proteins that bind epithelial cells of the intestinal barrier together.
View Article and Find Full Text PDFThe growing body of experimental and computational studies suggested that the cross-neutralization antibody activity against Omicron variants may be driven by balance and tradeoff of multiple energetic factors and interaction contributions of the evolving escape hotspots involved in antigenic drift and convergent evolution. However, the dynamic and energetic details quantifying the balance and contribution of these factors, particularly the balancing nature of specific interactions formed by antibodies with the epitope residues remain scarcely characterized. In this study, we performed molecular dynamics simulations, ensemble-based deep mutational scanning of SARS-CoV-2 spike residues and binding free energy computations for two distinct groups of broadly neutralizing antibodies : E1 group (BD55-3152, BD55-3546 and BD5-5840) and F3 group (BD55-3372, BD55-4637 and BD55-5514).
View Article and Find Full Text PDFKidney explant cultures are traditionally carried out at air-liquid interfaces, which disrupts 3D tissue structure and limits interpretation of developmental data. To overcome this limitation, we developed a 3D culture technique using hydrogel embedding to capture morphogenesis in real time. We show that 3D culture better approximates -like niche spacing and dynamic tubule tip rearrangement, as well as -like presentation of branching defects under perturbations to glial cell-derived neurotrophic factor (GDNF)- RE arranged during T ransfection (RET) tyrosine kinase signaling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!