Repetitive transcranial magnetic stimulation has been increasingly studied in different neurological diseases, and although most studies focus on its effects on neuronal cells, the contribution of non-neuronal cells to the improvement triggered by repetitive transcranial magnetic stimulation in these diseases has been increasingly suggested. To systematically review the effects of repetitive magnetic stimulation on non-neuronal cells two online databases, Web of Science and PubMed were searched for the effects of high-frequency-repetitive transcranial magnetic stimulation, low-frequency-repetitive transcranial magnetic stimulation, intermittent theta-burst stimulation, continuous theta-burst stimulation, or repetitive magnetic stimulation on non-neuronal cells in models of disease and in unlesioned animals or cells. A total of 52 studies were included. The protocol more frequently used was high-frequency-repetitive magnetic stimulation, and in models of disease, most studies report that high-frequency-repetitive magnetic stimulation led to a decrease in astrocyte and microglial reactivity, a decrease in the release of pro-inflammatory cytokines, and an increase of oligodendrocyte proliferation. The trend towards decreased microglial and astrocyte reactivity as well as increased oligodendrocyte proliferation occurred with intermittent theta-burst stimulation and continuous theta-burst stimulation. Few papers analyzed the low-frequency-repetitive transcranial magnetic stimulation protocol, and the parameters evaluated were restricted to the study of astrocyte reactivity and release of pro-inflammatory cytokines, reporting the absence of effects on these parameters. In what concerns the use of magnetic stimulation in unlesioned animals or cells, most articles on all four types of stimulation reported a lack of effects. It is also important to point out that the studies were developed mostly in male rodents, not evaluating possible differential effects of repetitive transcranial magnetic stimulation between sexes. This systematic review supports that through modulation of glial cells repetitive magnetic stimulation contributes to the neuroprotection or repair in various neurological disease models. However, it should be noted that there are still few articles focusing on the impact of repetitive magnetic stimulation on non-neuronal cells and most studies did not perform in-depth analyses of the effects, emphasizing the need for more studies in this field.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10479834 | PMC |
http://dx.doi.org/10.4103/1673-5374.374140 | DOI Listing |
NPJ Parkinsons Dis
January 2025
Department of Molecular Pathology, IRCCS Neuromed, Pozzilli, Italy.
Metabotropic glutamate (mGlu) receptors are candidate drug targets for therapeutic intervention in Parkinson's disease (PD). Here we focused on mGlu3, a receptor subtype involved in synaptic regulation and neuroinflammation. mGlu3 mice showed an enhanced nigro-striatal damage and microglial activation in response to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP).
View Article and Find Full Text PDFBMC Geriatr
January 2025
Department of Rehabilitation Medicine (Rehabilitation Center), Qilu Hospital of Shandong University, No. 107, Wenhuaxi Road, Jinan , Shandong, 250012, China.
Background: Mild cognitive impairment (MCI) is a high-risk factor for dementia and dysphagia; therefore, early intervention is vital. The effectiveness of intermittent theta burst stimulation (iTBS) targeting the right dorsal lateral prefrontal cortex (rDLPFC) remains unclear.
Methods: Thirty-six participants with MCI were randomly allocated to receive real (n = 18) or sham (n = 18) iTBS.
Brain Stimul
January 2025
Department of Electrical and Computer Engineering, Worcester Polytechnic Institute, Worcester, MA, USA, 01609; Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA 02129; Department of Mathematics, Worcester Polytechnic Institute, Worcester, MA, USA, 01609.
Biomater Adv
December 2024
Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center of Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, PR China. Electronic address:
Spinal cord injury (SCI) results in electrophysiological and behavioral dysfunction. Electrical stimulation (ES) is considered to be an effective treatment for mild SCI; however, ES is not applicable to severe SCI due to the disruption of electrical conduction caused by tissue defects. Therefore, the use of conductive materials to fill the defects and restore electrical conduction in the spinal cord is a promising therapeutic strategy.
View Article and Find Full Text PDFMicrob Cell Fact
January 2025
Department of Botany, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt.
Background: In response to iron deficiency and other environmental stressors, cyanobacteria producing siderophores can help in ameliorating plant stress and enhancing growth physiological and biochemical processes. The objective of this work was to screen the potential of Arthrospira platensis, Pseudanabaena limnetica, Nostoc carneum, and Synechococcus mundulus for siderophore production to select the most promising isolate, then to examine the potentiality of the isolated siderophore in promoting Zea mays seedling growth in an iron-limited environment.
Results: Data of the screening experiment illustrated that Synechococcus mundulus significantly recorded the maximum highest siderophore production (78 ± 2%) while the minimum production was recorded by Nostoc carneum (24.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!