Aims: ATP-binding cassette transporters are important proteins in regulating bile constituent transport between hepatocytes and the bile canalicular system. Dysfunctional transporters lead to accumulation of toxic bile components within hepatocytes or the biliary system, known as cholestasis, resulting in liver damage. It has been previously reported that two particular ATP-binding cassette transporters, ABCB4 and ABCB11, have altered expression in patients with primary sclerosing cholangitis (PSC). Interested in further analysis of expression patterns of ATP-binding cassette transporters in PSC patients, we investigated liver samples from 201 patients, including 43 patients with PSC and 51 patients with primary biliary cholangitis patients (PBC). In addition to ABCB4 and ABCB11, we also included other ATP-binding cassette transporters, to determine if upregulation of ABCB4 and ABCB11 is specifically found in the liver of patients with PSC.

Methods And Results: Retrospectively, formalin-fixed and paraffin-embedded liver biopsies, resections, and explants were selected to investigate the expression of ABCB1, ABCB4, ABCB11, ABCG5/8, and FXR1 using nanoString nCounter and immunohistochemistry for validation of differently expressed transporters seen in PSC liver samples in comparison to non-PSC liver specimens. Strikingly, ABCB4 was the only ATP-binding cassette transporter showing increased gene and protein expression in hepatocytes of PSC livers when compared to non-PSC liver specimens. Furthermore, ABCB4 protein expression also correlated with disease stage in PSC.

Conclusion: Our study concluded that altered ABCB4 expression is specifically seen in liver specimens of PSC patients. Therefore, quantitative ABCB4 analysis may be an additional useful tool for the histopathological diagnosis of PSC to distinguish this entity from other cholangiopathies.

Download full-text PDF

Source
http://dx.doi.org/10.1111/his.15006DOI Listing

Publication Analysis

Top Keywords

atp-binding cassette
24
cassette transporters
20
abcb4 abcb11
16
psc patients
12
liver specimens
12
abcb4
9
primary sclerosing
8
sclerosing cholangitis
8
psc
8
cholangitis psc
8

Similar Publications

Chemotherapy resistance is a great challenge in the treatment of gastric cancer (GC), so it is urgent to explore the prognostic markers of chemoresistance. PUF60 (Poly (U)-binding splicing factor 60) is a nucleic acid-binding protein that has been shown to regulate transcription and link to tumorigenesis in various cancers. However, its biological role and function in chemotherapy resistance of GC is unclear.

View Article and Find Full Text PDF

Background: Our study examines the relationship between gastroesophageal reflux disease (GERD) and small intestinal bacterial overgrowth (SIBO), focusing on the potential impact of acid-suppressive drugs. We also explore changes in gut microbiota and metabolism in patients with both conditions.

Methods: This study included patients from the Department of Gastroenterology, Beijing Shijitan Hospital, between February 2021 and November 2023.

View Article and Find Full Text PDF

The ATP-binding cassette transporter subfamily C member 8 (ABCC8) regulates insulin secretion from β-cells. Loss- and gain-of-function variants of have been implicated in neonatal hyperinsulinemic hypoglycemia and young-onset diabetes, respectively. Although some patients with variants have been reported to exhibit both neonatal hypoglycemia and young-onset diabetes, the molecular and clinical characteristics of this atypical phenotype remain unknown.

View Article and Find Full Text PDF

Quantitative analysis of the root posture of mutants with wavy roots.

Quant Plant Biol

November 2024

Graduate School of Natural Science, Konan University, Kobe 658-8501, Japan.

Plant postures are affected by environmental stimuli. When the gravitational direction changes, the mutants () and () exhibit aberrantly enhanced organ bending. Whether their phenotypes are due to the same mechanism is unknown.

View Article and Find Full Text PDF

Do P-glycoprotein-mediated drug-drug interactions at the blood-brain barrier impact morphine brain distribution?

J Pharmacokinet Pharmacodyn

January 2025

Division of Systems Pharmacology and Pharmacy, Leiden Academic Center for Drug Research, Leiden University, Einsteinweg 55, Leiden, 2333 CC, The Netherlands.

P-glycoprotein (P-gp) is a key efflux transporter and may be involved in drug-drug interactions (DDIs) at the blood-brain barrier (BBB), which could lead to changes in central nervous system (CNS) drug exposure. Morphine is a P-gp substrate and therefore a potential victim drug for P-gp mediated DDIs. It is however unclear if P-gp inhibitors can induce clinically relevant changes in morphine CNS exposure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!