Aqueous Zn-ion batteries (AZIBs) attract intensive attention owing to their environmental friendliness, cost-effectiveness, innate safety, and high specific capacity. However, the practical applications of AZIBs are hindered by several adverse phenomena, including corrosion, Zn dendrites, and hydrogen evolution. Herein, a Zn anode decorated with a 3D porous-structured Na V (PO4) (NVP@Zn) is obtained, where the NVP reconstruct the electrolyte/anode interface. The resulting NVP@Zn anode can provide a large quantity of fast and stable channels, facilitating enhanced Zn ion deposition kinetics and regulating the Zn ions transport process through the ion confinement effect. The NASICON-type NVP protective layer promote the desolvation process due to its nanopore structure, thus effectively avoiding side reactions. Theoretical calculations indicate that the NVP@Zn electrode has a higher Zn ion binding energy and a higher migration barrier, which demonstrates that NVP protective layer can enhance Zn ion deposition kinetics and prevent the unfettered 2D diffusion of Zn ions. Therefore, the results show that NVP@Zn/MnO full cell can maintain a high specific discharge capacity of 168 mAh g and a high-capacity retention rate of 74.6% after cycling. The extraordinary results obtained with this strategy have confirmed the promising applications of NVP in high-performance AZIBs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/smll.202303963 | DOI Listing |
PLoS One
January 2025
Centre for Regenerative Medicine and Devices, University of Brighton, Brighton, United Kingdom.
Diabetic foot, leg ulcers and decubitus ulcers affect millions of individuals worldwide leading to poor quality of life, pain and in several cases to limb amputations. Despite the global dimension of this clinical problem, limited progress has been made in developing more efficacious wound dressings, the design of which currently focusses on wound protection and control of its exudate volume. The present in vitro study systematically analysed seven types of clinically-available wound dressings made of different biomaterial composition and engineering.
View Article and Find Full Text PDFSci Adv
January 2025
Institut für Biologie und Biotechnologie der Pflanzen, Universität Münster, Münster, Germany.
Systemic signaling is an essential hallmark of multicellular life. Pathogen encounter occurs locally but triggers organ-scale and organismic immune responses. In plants, elicitor perception provokes systemically expanding Ca and HO signals conferring immunity.
View Article and Find Full Text PDFCNS Neurosci Ther
January 2025
Department of Neurology, Isfahan University of Medical Sciences, Isfahan, Iran.
Background: Multiple sclerosis (MS) is an autoimmune disorder affecting the central nervous system, with varying clinical manifestations such as optic neuritis, sensory disturbances, and brainstem syndromes. Disease progression is monitored through methods like MRI scans, disability scales, and optical coherence tomography (OCT), which can detect retinal thinning, even in the absence of optic neuritis. MS progression involves neurodegeneration, particularly trans-synaptic degeneration, which extends beyond the initial injury site.
View Article and Find Full Text PDFActa Parasitol
January 2025
Cytokines and NO Synthases Team, LBCM, FSB, USTHB, BP 32 El Alia, Bab Ezzouar, Algiers, 16111, Algeria.
Purpose: Since extract of the laminated layer (LL) from E. granulosus showed immuno-modulatory effects in vitro and in vivo, we sought to determine its effect on the onset, development, and evolution of experimental auto-immune uveitis (EAU). The latter is a model of some human diseases with ocular inflammation that can cause blindness.
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
Department of Biomechatronics Engineering, National Taiwan University, Taipei 10617, Taiwan.
An origami-based tactile sensory ring utilizing multilayered conductive paper substrates presents an innovative approach to wearable health applications. By harnessing paper's flexibility and employing origami folding, the sensors integrate structural stability and self-packaging without added encapsulation layers. Knot-shaped designs create loop-based systems that secure conductive paper strips and protect sensing layers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!