Rapid fluctuations in the quantity and quality of natural light expose photosynthetic organisms to conditions when the capacity to utilize absorbed quanta is insufficient. These conditions can result in the production of reactive oxygen species and photooxidative damage. Non-photochemical quenching (NPQ) and alternative electron transport are the two most prominent mechanisms which synergistically function to minimize the overreduction of photosystems. In the green alga Chlamydomonas reinhardtii, the stress-related light-harvesting complex (LHCSR) is a required component for the rapid induction and relaxation of NPQ in the light-harvesting antenna. Here, we use simultaneous chlorophyll fluorescence and oxygen exchange measurements to characterize the acclimation of the Chlamydomonas LHCSR-less mutant (npq4lhcsr1) to saturating light conditions. We demonstrate that, in the absence of NPQ, Chlamydomonas does not acclimate to sinusoidal light through increased light-dependent oxygen consumption. We also show that the npq4lhcsr1 mutant has an increased sink capacity downstream of PSI and this energy flow is likely facilitated by cyclic electron transport. Furthermore, we show that the timing of additions of mitochondrial inhibitors has a major influence on plastid/mitochondrial coupling experiments.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11120-023-01037-7DOI Listing

Publication Analysis

Top Keywords

chlamydomonas reinhardtii
8
electron transport
8
characterizing compensatory
4
compensatory mechanisms
4
mechanisms absence
4
absence photoprotective
4
chlamydomonas
4
photoprotective chlamydomonas
4
reinhardtii rapid
4
rapid fluctuations
4

Similar Publications

This study investigated the effects of Chlamydomonas reinhardtii polysaccharides (CRPs) on retarding the retrogradation of japonica rice starch (JS) and glutinous rice starch (GS). Structure characterization revealed that CRPs, with an average molecular weight of 505 kDa, mainly consisted of glucose, mannose, and galactose and featured a triple-helix structure. CRPs could reduce the storage modulus increment of JS during the cooling process by interacting with amylose, thereby inhibiting gel network formation.

View Article and Find Full Text PDF

The green unicellular algae contains 12-13 carbonic anhydrases (CAs). For a long time, the two closely related α-CAs of the periplasmic membrane CAH1 and CAH2 were considered to be the CAs with the highest CO hydration activity. The recombinant protein α-CA CAH3 (rCAH3) from the thylakoid lumen obtained in the present study showed more than three times higher activity compared to CAH1 and more than 11 times higher compared to previous studies with rCAH3.

View Article and Find Full Text PDF

Circadian Proteomics Reassesses the Temporal Regulation of Metabolic Rhythms by Chlamydomonas Clock.

Plant Cell Environ

January 2025

Department of Biology, Trivedi School of Biosciences, Ashoka University, Sonipat, India.

Circadian clocks execute temporal regulation of metabolism by modulating the timely expression of genes. Clock regulation of mRNA synthesis was envisioned as the primary driver of these daily rhythms. mRNA oscillations often do not concur with the downstream protein oscillations, revealing the importance to study protein oscillations.

View Article and Find Full Text PDF

Oxygen prevents hydrogen production in Chlamydomonas (Chlamydomonas reinhardtii), in part by inhibiting the transcription of hydrogenase genes. We developed a screen for mutants showing constitutive accumulation of iron hydrogenase 1 (HYDA1) transcripts in normoxia. A reporter gene required for ciliary motility placed under the control of the HYDA1 promoter conferred motility only in hypoxia.

View Article and Find Full Text PDF

Stress on the Endoplasmic Reticulum Impairs the Photosynthetic Efficiency of Chlamydomonas.

Int J Mol Sci

December 2024

Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang 110161, China.

Stress on the Endoplasmic reticulum (ER) can severely disrupt cellular function by impairing protein folding and post-translational modifications, thereby leading to the accumulation of poor-quality proteins. However, research on its impact on photosynthesis remains limited. In this study, we investigated the impact of ER stress on the photosynthetic efficiency of Chlamydomonas reinhardtii using pharmacological inducers, tunicamycin (TM) and brefeldin A (BFA), which specifically target the ER.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!