The intralaminar nuclei of the thalamus play a pivotal role in awareness, conscious experience, arousal, sleep, vigilance, as well as in cognitive, sensory, and sexual processing. Nonetheless, in humans, little is known about the direct involvement of these nuclei in such multifaceted functions and their structural connections in the brain. Thus, examining the versatility of structural connectivity of the intralaminar nuclei with the rest of the brain seems reasonable. Herein, we attempt to show the direct structural connectivity of the intralaminar nuclei to diencephalic, mesencephalic, and cortical areas using probabilistic tracking of the diffusion data from the human connectome project. The intralaminar nuclei fiber distributions span a wide range of subcortical and cortical areas. Moreover, the central medial and parafascicular nucleus reveal similar connectivity to the temporal, visual, and frontal cortices with only slight variability. The central lateral nucleus displays a refined projection to the superior colliculus and fornix. The centromedian nucleus seems to be an essential component of the subcortical somatosensory system, as it mainly displays connectivity via the medial and superior cerebellar peduncle to the brainstem and the cerebellar lobules. The subparafascicular nucleus projects to the somatosensory processing areas. It is interesting to note that all intralaminar nuclei have connections to the brainstem. In brief, the structural connectivity of the intralaminar nuclei aligns with the structural core of various functional demands for arousal, emotion, cognition, sensory, vision, and motor processing. This study sheds light on our understanding of the structural connectivity of the intralaminar nuclei with cortical and subcortical structures, which is of great interest to a broader audience in clinical and neuroscience research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10366221 | PMC |
http://dx.doi.org/10.1038/s41598-023-38967-0 | DOI Listing |
Cell Rep
January 2025
Lendület Thalamus Research Group, HUN-REN Institute of Experimental Medicine, 1083 Budapest, Hungary. Electronic address:
Movement and locomotion are controlled by large neuronal circuits like the cortex-basal ganglia (BG)-thalamus loop. Besides the inhibitory thalamic output, the BG directly control movement via specialized connections with the brainstem. Whether other parallel loops with similar logic exist is presently unclear.
View Article and Find Full Text PDFBrain Struct Funct
January 2025
Department of Physiology and Neurobiology, Laboratory of Molecular and Systems Neurobiology, Eötvös Loránd University, Budapest, Hungary.
The lateral septum (LS) demonstrates activation in response to pup exposure in mothers, and its lesions eliminate maternal behaviors suggesting it is part of the maternal brain circuitry. This study shows that the density of pup-activated neurons in the ventral subdivision of the LS (LSv) is nearly equivalent to that in the medial preoptic area (MPOA), the major regulatory site of maternal behavior in rat dams. However, when somatosensory inputs including suckling were not allowed, pup-activation was markedly reduced in the LSv.
View Article and Find Full Text PDFJ Neurophysiol
February 2025
Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States.
The thalamic reticular nucleus (TRN) is a thin shell of gap junction-coupled GABAergic inhibitory neurons that regulate afferent sensory relay of the thalamus. The TRN receives dopaminergic innervation from the midbrain, and it is known to express high concentrations of D1 and D4 receptors. Although dopaminergic modulation of presynaptic inputs to TRN has been described, the direct effect of dopamine on TRN neurons and its electrical synapses is largely unknown.
View Article and Find Full Text PDFCNS Neurosci Ther
December 2024
Department of Neurosurgery, Epilepsy Center, Sanbo Brain Hospital, Capital Medical University, Beijing, China.
Introduction: The centromedian nucleus (CM) of the thalamus is essential for arousal, attention, sensory processing, and motor control. Neuromodulation targeting CM dysfunction has shown efficacy in various neurological disorders. However, its individualized precise transcranial magnetic stimulation (TMS) remains unreported.
View Article and Find Full Text PDFNeuroradiology
December 2024
FSBI "Federal Center of Neurosurgery", Nemirovich-Danchenko street, 132/1, 630087, Novosibirsk, Russia.
Purpose: To investigate structural alterations in the thalamus in patients with primary trigeminal neuralgia and provide a detailed perspective on thalamic remodeling in response to chronic pain at the level of individual thalamic nuclei. METHODS: We analyzed a sample of 62 patients with primary trigeminal neuralgia who underwent surgical treatment, along with 28 healthy participants. Magnetic resonance imaging (MRI) data were acquired using a 3T system equipped with a 16-channel receiver head coil.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!