Subcutaneous islet transplantation is a promising treatment for severe diabetes; however, poor engraftment hinders its prevalence. We previously reported that a recombinant peptide (RCP) enhances subcutaneous islet engraftment. However, it is impractical for clinical use because RCP must be removed when transplanting islets. We herein investigated whether a novel bioabsorbable gelatin hydrogel nonwoven fabric (GHNF) could improve subcutaneous islet engraftment. A silicon spacer with or without GHNF was implanted into the subcutaneous space of diabetic mice. Syngeneic islets were transplanted into the pretreated space or intraportally (Ipo group). Blood glucose, intraperitoneal glucose tolerance, immunohistochemistry, CT angiography and gene expression were evaluated. The cure rate and glucose tolerance of the GHNF group were significantly better than in the control and Ipo groups (p < 0.01, p < 0.05, respectively). In the GHNF group, a limited increase of vWF-positive vessels was detected in the islet capsule, whereas laminin (p < 0.05), collagen III and IV were considerably enhanced. TaqMan arrays revealed a significant upregulation of 19 target genes (including insulin-like growth factor-2) in the pretreated space. GHNF markedly improved the subcutaneous islet transplantation outcomes, likely due to ECM compensation and protection of islet function by various growth factors, rather than enhanced neovascularization.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10366205 | PMC |
http://dx.doi.org/10.1038/s41598-023-39212-4 | DOI Listing |
Am J Physiol Endocrinol Metab
January 2025
Division of Pulmonary, Critical Care, and Sleep Medicine, University of Miami, Miller School of Medicine, Miami Florida.
Intermittent hypoxemia (IH), a pathophysiologic consequence of obstructive sleep apnea (OSA), adversely affects insulin sensitivity, insulin secretion, and glucose tolerance. Nifedipine, an L-type calcium channel blocker frequently used for treatment of hypertension, can also impair insulin sensitivity and secretion. However, the cumulative and interactive repercussions of IH and nifedipine on glucose homeostasis have not been previously investigated.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
January 2025
Division of Pulmonary, Critical Care, and Sleep Medicine, University of Miami, Miller School of Medicine, Miami Florida.
Intermittent hypoxemia (IH), a pathophysiologic consequence of obstructive sleep apnea (OSA), adversely affects insulin sensitivity, insulin secretion, and glucose tolerance. Nifedipine, an L-type calcium channel blocker frequently used for treatment of hypertension, can also impair insulin sensitivity and secretion. However, the cumulative and interactive repercussions of IH and nifedipine on glucose homeostasis have not been previously investigated.
View Article and Find Full Text PDFSurg Innov
December 2024
LUMC Transplant Center, Leiden University Medical Center, Leiden, The Netherlands.
Background: Intraportal pancreatic islet transplantation is a treatment option for patients with severe beta cell failure and unstable glycemic control. However, this procedure is associated with loss of beta cells after intrahepatic transplantation. Islet delivery devices (IDDs) implanted at extrahepatic sites may support engraftment and improve survival of pancreatic islets.
View Article and Find Full Text PDFFront Immunol
December 2024
Medical College, Henan University of Chinese Medicine, Zhengzhou, China.
Background: Breast cancer (BRCA) is the most prevalent type of cancer worldwide. As a highly heterogeneous cancer, it has a high recurrence rate. Since its biological behavior can be regulated by immunity and cuprotosis, so exploring potential therapeutic target to mediate immunity and cuprotosis is of great significance for BRCA therapy.
View Article and Find Full Text PDFBiomaterials
April 2025
Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China. Electronic address:
Transplantation of insulin-secreting cells provides a promising method for re-establishing the autonomous blood glucose control ability of type 1 diabetes (T1D) patients, but the low survival of the transplanted cells hinder the therapeutic efficacy. In this study, we 3D-printed an encapsulation system containing β-like cells and microvascular fragments (MVF), to create a retrivable microdevice with vascularized islets in vivo for T1D therapy. The functional β-like cells were differentiated from the urine epithelial cell-derived induced pluripotent stem cells (UiPSCs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!