Millions of people are infected by the dengue and Zika viruses each year, resulting in significant morbidity and mortality. Galidesivir is an adenosine nucleoside analog that can attenuate flavivirus replication in cell-based assays and animal models of infection. Galidesivir is converted to the triphosphorylated form by host kinases and subsequently incorporated into viral RNA by viral RNA polymerases. This has been proposed to lead to the delayed termination of RNA synthesis. Here, we report direct in vitro testing of the effects of Galidesivir triphosphate on dengue-2 and Zika virus polymerase activity. Galidesivir triphosphate was chemically synthesized, and inhibition of RNA synthesis followed using a dinucleotide-primed assay with a homopolymeric poly(U) template. Galidesivir triphosphate was equipotent against dengue-2 and Zika polymerases, with IC values of 42 ± 12 μM and 47 ± 5 μM, respectively, at an ATP concentration of 20 μM. RNA primer extension assays show that the dengue-2 polymerase stalls while attempting to add a Galidesivir nucleotide to the nascent RNA chain, evidenced by the accumulation of RNA products truncated immediately upstream of Galidesivir incorporation sites. Nevertheless, Galidesivir is incorporated at isolated sites with low efficiency, leading to the subsequent synthesis of full-length RNA with no evidence of delayed chain termination. The incorporation of Galidesivir at consecutive sites is strongly disfavored, highlighting the potential for modulation of inhibitory effects of nucleoside analogs by the template sequence. Our results suggest that attenuation of dengue replication by Galidesivir may not derive from the early termination of RNA synthesis following Galidesivir incorporation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10739630PMC
http://dx.doi.org/10.1021/acsinfecdis.3c00311DOI Listing

Publication Analysis

Top Keywords

galidesivir triphosphate
16
galidesivir
12
rna synthesis
12
rna
9
virus polymerase
8
viral rna
8
termination rna
8
dengue-2 zika
8
galidesivir incorporation
8
triphosphate promotes
4

Similar Publications

Article Synopsis
  • Human norovirus (HuNV) is a major cause of gastroenteritis globally, primarily from genogroups I and II, and its lifecycle depends on proteins produced during viral replication, including the functional protease-polymerase (ProPol).
  • The study of ProPol's enzymatic activity revealed that it performs similarly or better than the mature polymerase regarding RNA templates, with unique activity on a poly(A) template and varying responses to antiviral compounds.
  • Advanced cryo-electron microscopy was utilized to determine the structure of the ProPol polymerase domain, revealing similarities to the mature polymerase, thus enhancing the understanding of HuNV replication mechanisms.
View Article and Find Full Text PDF

Millions of people are infected by the dengue and Zika viruses each year, resulting in significant morbidity and mortality. Galidesivir is an adenosine nucleoside analog that can attenuate flavivirus replication in cell-based assays and animal models of infection. Galidesivir is converted to the triphosphorylated form by host kinases and subsequently incorporated into viral RNA by viral RNA polymerases.

View Article and Find Full Text PDF

Dual targeting of RdRps of SARS-CoV-2 and the mucormycosis-causing fungus: an perspective.

Future Microbiol

July 2022

Biophysics Department, Faculty of Sciences, Cairo University, Giza, 12613, Egypt.

During the past few months, mucormycosis has been associated with SARS-CoV-2 infections. Molecular docking combined with molecular dynamics simulation is utilized to test nucleotide-based inhibitors against the RdRps of SARS-CoV-2 solved structure and RdRp model built . The results reveal a comparable binding affinity of sofosbuvir, galidesivir, ribavirin and remdesivir compared with the physiological nucleotide triphosphates against RdRp as well as the SARS-CoV-2 RdRp as reported before.

View Article and Find Full Text PDF

Since the outbreak emerged in November 2019, no effective drug has yet been found against SARS-CoV-2. Repositioning studies of existing drug molecules or candidates are gaining in overcoming COVID-19. Antiviral drugs such as remdesivir, favipiravir, ribavirin, and galidesivir act by inhibiting the vital RNA polymerase of SARS-CoV-2.

View Article and Find Full Text PDF

RNA dependent RNA polymerase (RdRp) as a drug target for SARS-CoV2.

J Biomol Struct Dyn

August 2022

Department of Chemical Engineering, Indian Institute of Technology, New Delhi, India.

RNA-dependent RNA polymerase (RdRp), also called nsp12, is considered a promising but challenging drug target for inhibiting replication and hence, the growth of various RNA-viruses. In this report, a computational study is performed to offer insights on the binding of Remdesivir and Galidesivir with SARS-CoV2 RdRp with natural substrate, ATP, as the control. It was observed that Remdesivir and Galidesivir exhibited similar binding energies for their best docked poses, -6.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!