With the rapid development of flexible portable devices, polymer-based hydrogel electrolytes have drawn tremendous attention and widespread interest to replace conventional liquid electrolytes. Herein, an eco-friendly, low cost and fast method was adopted to synthesize novel cross-linked dual-network hydrogel electrolytes (PVA/SA/MXene-NaCl) within 5 min due to the formation of borate bonds. The unique dual-network structure of hydrogel enabled hydrogel electrolytes to efficiently dissipate energy under deformation and the formation of borate bonds endowed hydrogel with self-healing ability. Benefited from the introduction of NaCl and MXene, the hydrogels displayed a high ionic conductivity (40.8 mS/cm) and enhanced mechanical strength (650 kPa). Notedly, the flexible supercapacitor with low concentration of NaCl (0.3 mol L) delivered a superior areal capacitance of 130.8 mF cm at 1 mA cm and 106.2 mF cm at 3 mA cm, and simultaneously offered remarkable capacitance retention under the state of bending, self-healing (five cycles), compression and stretching. Moreover, as-assembled supercapacitor maintained about 88.9 % of its original capacitance and 90.5 % of Coulombic efficiency after 5000 charge-discharge cycles. Our research presented a simple and universally pathway to prepare flexible energy storage devices with excellent mechanical and electrochemical properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2023.125937 | DOI Listing |
Carbohydr Polym
March 2025
College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China; School of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, South China Normal University, Guangzhou 510006, China. Electronic address:
The management of wounds infected with drug-resistant bacteria represents a significant challenge to public health globally. Nanotechnology-functionalized photothermal hydrogel with good thermal stability, biocompatibility and tissue adhesion exhibits great potential in treating these infected wounds. Herein, a novel photothermal hydrogel (mCS-Cu-Ser) was prepared through in situ mineralization in the hydrogel networks and ion cross-linking driven by copper ions (∼3 mM).
View Article and Find Full Text PDFSci Prog
January 2025
Department of Hepatobiliary Surgery, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang, China.
Electrolyte imbalance management is crucial in diverse clinical scenarios, with intravenous potassium repletion often required. High-concentration infusions can pose severe complications if extravasation occurs, leading to phlebitis, local tissue damage, or in severe cases, cutaneous necrosis. This risk is elevated in geriatric patients due to factors like reduced tissue elasticity and sensitivity.
View Article and Find Full Text PDFMater Horiz
January 2025
School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, P. R. China.
Hydrogel electrolytes are crucial for solving the problems of random zinc dendrite growth, hydrogen evolution reactions, and uncontrollable passivation. However, their complex fabrication processes pose challenges to achieving large-scale production with excellent mechanical properties required to withstand multiple cycles of mechanical loads while maintaining high electrochemical performance needed for the new-generation flexible zinc-ion batteries. Herein, we present a superspreading-based strategy to produce robust hydrogel electrolytes consisting of polyvinyl alcohol, sodium alginate and sodium acetate.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China. Electronic address:
The accurate and reliable quantification of the levels of disease markers in human sweat is of significance for health monitoring through wearable sensing technology, but the sensors performed in real sweat always suffer from biofouling that cause performance degradation or even malfunction. We herein developed a wearable antifouling electrochemical sensor based on a novel multifunctional hydrogel for the detection of targets in sweat. The integration of polyethylene glycol (PEG) into the sulfobetaine methacrylate (SBMA) hydrogel results in a robust network structure characterized by abundant hydrophilic groups on its surface, significantly enhancing the PEG-SBMA hydrogel's antifouling and mechanical properties.
View Article and Find Full Text PDFSci Rep
January 2025
Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
This study investigates the negative impact of climate change on water resources, specifically water for agricultural irrigation. It describes how to optimize swelling, gel properties and long-term water retention capacities of Na-CMC/PAAm hydrogels for managing drought stress of Sugar beet plants through techniques such as changing the composition, synthetic conditions and chemical modification. Gamma radiation-induced free radical copolymerization was used to synthesize superabsorbent hydrogels using sodium carboxymethyl cellulose (Na-CMC) and acrylamide (AAm).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!