An integrated approach for the extraction of lipids from marine macroalgae consortium using RSM optimization and thermo-kinetic analysis.

Chemosphere

Laboratory of Alternative Fuels & Sustainability, School of Chemical & Materials Engineering (SCME), National University of Sciences & Technology (NUST), Sector H-12, Islamabad, 44000, Pakistan. Electronic address:

Published: October 2023

This work presents an integrated approach for the extraction of lipids from marine macroalgae using RSM optimization and thermo-kinetic analysis. The lipids were extracted from marine macroalgal biomass using a Soxhlet extractor. The Soxhlet extraction parameters, including temperature (60-80 °C), solvent-to-algae ratio (3:1-7:1), algal particle size (0.05-0.25 mm), and extraction time (60-180 min), were optimized using RSM to achieve the maximum possible lipid extraction yield from marine macroalgae. The highest lipid extraction yield of 12.76% was obtained using the optimized conditions, which included an extraction temperature of 72 °C, a solvent-to-algae ratio of 5:1, an algal particle size of 0.16 mm, and an extraction time of 134 min. The kinetic analysis revealed an activation energy of 52.79 kJ mol-1 for the Soxhlet extraction process. The thermodynamic analysis of the Soxhlet extraction process demonstrated the following results: ΔH = 49.98 kJ mol-1, ΔS = -128.24 J K-1 mol-1, and ΔG = 93.98 kJ mol-1. The GC-MS analysis confirmed that the extracted algal lipids exhibited a composition of 14.20% palmitic acid, 4.89% stearic acid, and 76.97% oleic acid. The physiochemical analysis ensured that the extracted algal lipids possess excellent qualities, making them desirable for sustainable biofuel production.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2023.139623DOI Listing

Publication Analysis

Top Keywords

marine macroalgae
12
soxhlet extraction
12
extraction
10
integrated approach
8
approach extraction
8
extraction lipids
8
lipids marine
8
rsm optimization
8
optimization thermo-kinetic
8
thermo-kinetic analysis
8

Similar Publications

Differences in utilization and metabolism of Ulva lactuca polysaccharide by human gut Bacteroides species in the in vitro fermentation.

Carbohydr Polym

March 2025

Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, GuangDong Engineering Technology Research Center of Aquatic Food Processing and Safety Control, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, China; National Engineering Research Center of Seafood, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China. Electronic address:

Ulva lactuca polysaccharide (ULP), a sulfated polysaccharide, has been widely used in Asia. However, its digestion process and utilization by gut microbiota remain poorly understood. In this study, the in vitro simulated digestion and fermentation were used to analyze the digestibility of ULP.

View Article and Find Full Text PDF

Preparation of agar polysaccharides and biological activities and relationships of agar-derived oligosaccharides and monosaccharides: A review.

Int J Biol Macromol

January 2025

The State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China; Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi 214122, China. Electronic address:

Agar is one of the three major colloidal linear polysaccharides obtained from marine seaweeds, specifically red macroalgae (Rhodophyta). It has garnered significant attention owing to its diverse industrial applications, potential for bioethanol production, and the physiological activities of its derived saccharides. This review delves into the preparation and degradation processes of agar, focusing on both physical and chemical pretreatments, as well as subsequent hydrolysis through acid and enzymatic methods.

View Article and Find Full Text PDF

The effect of the in vitro acute exposure to diesel oil (0.001%, 0.01%, 0.

View Article and Find Full Text PDF

Persistent shifts to undesired ecological states, such as shifts from coral to macroalgae, are becoming more common. This highlights the need to understand processes that can help restore affected ecosystems. Herbivory on coral reefs is widely recognized as a key interaction that can keep macroalgae from outcompeting coral.

View Article and Find Full Text PDF

Computational insights into marine natural products as potential antidiabetic agents targeting the SIK2 protein kinase domain.

SAR QSAR Environ Res

December 2024

Structural Biology and Biocomputing Lab, Department of Bioinformatics, Alagappa University, Karaikudi, India.

Diabetes mellitus (DM) affects over 77 million adults in India, with cases expected to reach 134 million by 2045. Current treatments, including sulfonylureas and thiazolidinediones, are inadequate, underscoring the need for novel therapeutic strategies. This study investigates marine natural products (MNPs) as alternative therapeutic agents targeting SIK2, a key enzyme involved in DM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!