AI Article Synopsis

  • Psoriatic arthritis (PsA) is a complex inflammatory condition influenced by posttranslational modifications, which can affect various biological processes and disease outcomes.
  • A systematic review of 587 articles led to the inclusion of 47 relevant studies focused on identifying specific posttranslational modifications in PsA, such as citrullination and phosphorylation, and their relationship with disease progression.
  • The findings suggest that certain modifications, like citrullination and glycosylation, are linked to worse disease outcomes and may serve as potential biomarkers for diagnosis and treatment strategies in PsA.

Article Abstract

Background And Aims: Psoriatic arthritis (PsA) is an inflammatory complex condition. Posttranslational modifications influence almost all aspects of normal cell biology and pathogenesis. The aim of this systematic review was to collect all published evidence regarding posttranslational modifications in PsA, and the main outcome was to evaluate an association between disease outcomes and specific posttranslational modifications in PsA.

Methods: A systematic electronic search was performed in Medline, PubMed, Cochrane, Virtual Health Library, and Embase databases. A total of 587 articles were identified; 59 were evaluated after removing duplicates and scanning, of which 47 were included. A descriptive analysis was conducted, with results grouped according to the type of posttranslational modification evaluated. The protocol was registered at the PROSPERO database.

Results: Seven posttranslational modifications were identified: citrullination, carbamylation, phosphorylation, glycosylation, acetylation, methylation, and oxidative stress. Anti-citrullinated peptide and anti-carbamylated protein have been evaluated in rheumatoid arthritis. There is now information suggesting that these antibodies may be helpful in improving the diagnosis of PsA and that they may demonstrate a correlation with worse disease progression (erosions, polyarticular involvement, and poor treatment response). Glycosylation was associated with increased inflammation and phosphorylation products related to the expression of SIRT2 and pSTAT3 or the presence of Th17 and cytokine interleukin-22, suggesting a possible therapeutic target.

Conclusions: Posttranslational modifications often play a key role in modulating protein function in PsA and correlate with disease outcomes. Citrullination, carbamylation, phosphorylation, glycosylation, acetylation, methylation, and oxidative stress were identified as associated with diagnosis and prognosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.autrev.2023.103393DOI Listing

Publication Analysis

Top Keywords

posttranslational modifications
24
psoriatic arthritis
8
disease outcomes
8
citrullination carbamylation
8
carbamylation phosphorylation
8
phosphorylation glycosylation
8
glycosylation acetylation
8
acetylation methylation
8
methylation oxidative
8
oxidative stress
8

Similar Publications

Protocol for semisynthesis of histone H4 with site-specific modifications using irreversible sortase-mediated ligation.

STAR Protoc

January 2025

Department of Chemistry, School of Science, Westlake University, Hangzhou, Zhejiang Province 310030, China; Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province 310024, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province 310024, China. Electronic address:

Post-translational modifications (PTMs) of histone H4 play significant roles in the regulation of chromatin status. Here, we present a protocol for semisynthesis of histone H4 by sortase-mediated ligation (SML). We describe steps for solid-phase peptide synthesis of H4R40C(1-42), recombinant expression and purification of H4(41-102), expression and purification of eSrt(2A-9), and preparation of acrylamidine.

View Article and Find Full Text PDF

Matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) has been used to generate spatial maps of lipids, metabolites, peptides, proteins, and glycans in tissues; however, its use for mapping extracellular matrix (ECM) protein distributions is underexplored. ECM proteins play a major role in various pathological conditions, and changes in their spatial distributions affect the function and morphology of cells within tissues. ECM protein detection is challenging because they are large, insoluble, and undergo various post-translational modifications, such as glycosylation.

View Article and Find Full Text PDF

Peptide-based vaccine design against Hendra virus through immunoinformatics approach.

Vet Immunol Immunopathol

December 2024

Department of Biochemistry, Bahauddin Zakariya University, Multan 66000, Pakistan. Electronic address:

The Hendra virus (HeV) has resulted in epidemics of respiratory and neurological illnesses in animals. Humans have contracted diseases with high fatality rates as a result of infected domestic animals, but effective vaccinations and therapies are currently not available against HeV. Herein, we analyzed the proteome of HeV and constructed an effective and innovative multi-epitope vaccine using immunoinformatics techniques.

View Article and Find Full Text PDF

Systemic lupus erythematosus (SLE) is an autoimmune disease whose pathogenesis is not fully understood to date. One of the suggested mechanisms for its development is NETosis, which involves the release of a specific network consisting of chromatin, proteins, and enzymes from neutrophils, stimulating the immune system. One of its markers is citrullinated histone H3 (H3Cit).

View Article and Find Full Text PDF

Transcriptional regulation of adipocyte lipolysis by IRF2BP2.

Sci Adv

January 2025

Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Article Synopsis
  • Adipocyte lipolysis plays a crucial role in regulating overall energy levels and metabolic balance, primarily controlled by specific enzymes and their modifications.
  • The study identifies IRF2BP2 as a transcriptional repressor that, when deleted, boosts lipolysis in human adipocytes without altering glucose uptake, while its overexpression has the opposite effect.
  • The research further reveals that the deletion of IRF2BP2 in mice leads to increased lipolysis and inflammation in adipose tissue, suggesting potential strategies for targeting lipolysis in metabolic disease treatments.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!