The polyphenolic component of citrus fruits, hesperetin (Hst), is a metabolite of hesperidin. In this study, we examined the effect of varying doses and exposure times of hesperetin on MCF-7 and MDA-MB-231 cancer cells, as well as MCF-10A normal cells. By using MTT assay, real-time PCR, western blot, and flow cytometry, we determined the effects of Hst on cell viability, ROS levels, and markers of cell death. Furthermore, molecular docking was used to identify Hst targets that might be involved in ROS-dependent cell death. According to the results, different concentrations of Hst induced different modes of cell death at specific ROS levels. Paraptosis occurred in all cell lines at concentration ranges of IC to IC, and apoptosis occurred at concentrations greater than IC. In addition, MDA-MB-231 cells were subjected to senescence at sub-toxic doses when treated for a long period of time. When Hst levels were higher, N-acetylcysteine (NAC)'s effect on neutralizing ROS was more pronounced. According to the docking results, Hst may interact with several proteins involved in the regulation of ROS. As an example, the interaction of CCS (Copper chaperone for superoxide dismutase) with Hst might interfere with its chaperone function in folding SOD-1 (superoxide dismutase enzyme), contributing to an increase in cytoplasmic ROS levels. Finally, depending on the ROS level, Hst induces various modes of cell death.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbi.2023.110642DOI Listing

Publication Analysis

Top Keywords

cell death
20
ros levels
12
cell
8
cell lines
8
hst
8
modes cell
8
superoxide dismutase
8
ros
6
death
5
concentrations hesperetin
4

Similar Publications

Pulmonary arterial hypertension (PAH) is a syndrome characterized by increased pulmonary vascular resistance and elevated pulmonary artery pressure, ultimately leading to right heart failure and even death. Increasing evidence implicates the fat mass and obesity-associated protein (FTO) in various metabolic and inflammatory pathways; however, its role in pulmonary endothelial function and PAH remains largely unexplored. In this study, we examined the effects of endothelial cell-specific FTO knockout on PAH development.

View Article and Find Full Text PDF

Delayed fracture healing (DFH), a common complication of post-fracture surgery, exhibits an incompletely understood pathogenesis. The present study endeavors to investigate the roles and underlying mechanisms of miR-656-3p and Bone Morphogenetic Protein-2 (BMP-2) in DFH. It was recruited 94 patients with normal fracture healing (NFH) and 88 patients with DFH of the femoral neck.

View Article and Find Full Text PDF

T-cell prolymphocytic leukemia (T-PLL) is an aggressive lymphoid malignancy with limited treatment options. To discover new treatment targets for T-PLL, we performed high-throughput drug sensitivity screening on 30 primary patient samples ex-vivo. After screening over 2'800 unique compounds, we found T-PLL to be more resistant to most drug classes, including chemotherapeutics, compared to other blood cancers.

View Article and Find Full Text PDF

Phototherapy - which includes photothermal therapy (PTT) and photodynamic therapy (PDT) - has evoked interest as a promising cancer treatment modality on account of its noninvasiveness, spatiotemporal precision, and minimal side effects. C. Wang et al.

View Article and Find Full Text PDF

Rational Design of Nanozymes for Engineered Cascade Catalytic Cancer Therapy.

Chem Rev

January 2025

Center for Theoretical Interdisciplinary Sciences Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325001, P. R. China.

Nanozymes have shown significant potential in cancer catalytic therapy by strategically catalyzing tumor-associated substances and metabolites into toxic reactive oxygen species (ROS) , thereby inducing oxidative stress and promoting cancer cell death. However, within the complex tumor microenvironment (TME), the rational design of nanozymes and factors like activity, reaction substrates, and the TME itself significantly influence the efficiency of ROS generation. To address these limitations, recent research has focused on exploring the factors that affect activity and developing nanozyme-based cascade catalytic systems, which can trigger two or more cascade catalytic processes within tumors, thereby producing more therapeutic substances and achieving efficient and stable cancer therapy with minimal side effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!