Expression of recombinant proteins in mammalian cell factories relies on synthetic assemblies of genetic parts to optimally control flux through the product biosynthetic pathway. In comparison to other genetic part-types, there is a relative paucity of characterized signal peptide components, particularly for mammalian cell contexts. In this study, we describe a toolkit of signal peptide elements, created using bioinformatics-led and synthetic design approaches, that can be utilized to enhance production of biopharmaceutical proteins in Chinese hamster ovary cell factories. We demonstrate, for the first time in a mammalian cell context, that machine learning can be used to predict how discrete signal peptide elements will perform when utilized to drive endoplasmic reticulum (ER) translocation of specific single chain protein products. For more complex molecular formats, such as multichain monoclonal antibodies, we describe how a combination of in silico and targeted design rule-based in vitro testing can be employed to rapidly identify product-specific signal peptide solutions from minimal screening spaces. The utility of this technology is validated by deriving vector designs that increase product titers ≥1.8×, compared to standard industry systems, for a range of products, including a difficult-to-express monoclonal antibody. The availability of a vastly expanded toolbox of characterized signal peptide parts, combined with streamlined in silico/in vitro testing processes, will permit efficient expression vector re-design to maximize titers of both simple and complex protein products.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10443038 | PMC |
http://dx.doi.org/10.1021/acssynbio.3c00157 | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
Department of Cardiothoracic Surgery, The Affiliated Jiangyin Hospital of Nantong University, 214400 Jiangyin, Jiangsu, China.
Background: This study investigates the role of small ubiquitin-like modifier (SUMO)-specific peptidase 5 (SENP5), a key regulator of SUMOylation, in esophageal squamous cell carcinoma (ESCC), a lethal disease, and its underlying molecular mechanisms.
Methods: Differentially expressed genes between ESCC mouse oesophageal cancer tissues and normal tissues were analysed via RNA-seq; among them, SENP5 expression was upregulated, and this gene was selected for further analysis. Immunohistochemistry and western blotting were then used to validate the increased protein level of SENP5 in both mouse and human ESCC samples.
Viruses
January 2025
School of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
Bombyx mori bidensovirus (BmBDV), a significant pathogen in the sericulture industry, holds a unique taxonomic position due to its distinct segmented single-stranded DNA (ssDNA) genome and the presence of a self-encoding DNA polymerase. However, the functions of viral non-structural proteins, such as NS2, remain unknown. This protein is hypothesized to play a role in viral replication and pathogenesis.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
Institute of Neurobiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria.
This study explores the potential for the synthesis of peptide nanosystems comprising spinorphin molecules (with rhodamine moiety: Rh-S, Rh-S5, and Rh-S6) conjugated with nanoparticles (AuNPs), specifically peptide Rh-S@AuNPs, peptide Rh-S5@AuNPs, and peptide Rh-S6@AuNPs, alongside a comparative analysis of the biological activities of free and conjugated peptides. The examination of the microstructural characteristics of the obtained peptide systems and their physicochemical properties constitutes a key focus of this study. Zeta (ζ) potential, Fourier transformation infrared (FTIR) spectroscopy, circular dichroism (CD), scanning electron microscopy (SEM-EDS), transmission electron microscopy (TEM), and UV-Vis spectrophotometry were employed to elucidate the structure-activity correlations of the peptide@nano AuNP systems.
View Article and Find Full Text PDFPathogens
January 2025
National Reference Laboratory for Animal Schistosomiasis, Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
Schistosomiasis is a neglected tropical disease and the second most common parasitic disease after malaria. While praziquantel remains the primary treatment, concerns about drug resistance highlight the urgent need for new drugs and effective vaccines to achieve sustainable control. Previous proteomic studies from our group revealed that the expression of glycosyltransferase and nicastrin as proteins was higher in single-sex males than mated males, suggesting their critical roles in parasite reproduction and their potential as vaccine candidates.
View Article and Find Full Text PDFMolecules
January 2025
College of Life Science, Liaoning Normal University, Dalian 116081, China.
Liver-expressed antimicrobial peptide 2 (LEAP-2) was originally discovered as an antimicrobial peptide that plays a vital role in the host innate immune system of various vertebrates. Recent research discovered LEAP-2 as an endogenous antagonist and inverse agonist of the GHSR1a receptor. By acting as a competitive antagonist to ghrelin, LEAP-2 influences energy balance and metabolic processes via the ghrelin-GHSR1a signaling pathway.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!