In this work, we performed coarse-grained molecular dynamics (CGMD) simulations of G3, G4, and G5 polyamidoamine (PAMAM) dendrimers grafting with fatty acid (FTA) chains. The FTA chains of varying length and grafting densities (50% and 100% of surface terminals) correspond to pH 7 and 5, respectively. Our findings suggested that the structural properties of dendrimers were determined by dendrimer generation, polymerization degrees, and pH. With one exception, the size of the FTA grafting dendrimer shrank after fatty acid attachment. Because of the protonation of the dendrimer's interior amines at low pH, the FTA chains are distributed at the dendrimer's surface group. At pH 7, the FTA chains that have aggregated in the interior of the dendrimer cause chain crowding. Our research provided references on drug encapsulation and the lower toxicity of these hydrophobically modified nanoparticles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmgm.2023.108570 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!