To decarbonize our global energy system, sustainably harvesting metals from diverse sourcewaters is essential. Membrane-based processes have recently shown great promise in meeting these needs by achieving high metal ion selectivities with relatively low water and energy use. An example is nanofiltration, which harnesses steric, dielectric, and Donnan exclusion mechanisms to perform size- and charge-based fractionation of metal ions. To further optimize nanofiltration systems, multicomponent models are needed; however, conventional methods necessitate large amounts of data for model calibration, introduce substantial uncertainty into the characterization process, and often yield poor results when extrapolated. In this work, we develop a new computational architecture to alleviate these concerns. Specifically, we develop a framework that: (1) reduces the data requirement for model calibration to only charged species measurements; (2) eliminates uncertainty propagation problems present in conventional characterization processes; (3) enables exploration of pH optimization for enhancing metal ion selectivities; and (4) enables uncertainty quantification to assess the sensitivity of partition coefficients and ion driving forces to learned pore size distributions. Our framework captures eight independent datasets comprising over 500 measurements to within ±15%. Our studies also suggest that the expectation-maximization algorithm can effectively learn pore size distributions and that optimizing pH can improve metal ion selectivities by a factor of 3-10×. Our findings also reveal that image charges appear to play a less pronounced role in dielectric exclusion under the studied conditions and that ion driving forces are more sensitive to pore size distributions than partition coefficients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2023.120325 | DOI Listing |
Inorg Chem
January 2025
Department of Material and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden.
Zinc oxide (ZnO) is a semiconductor with a wide range of applications, and often the properties are modified by metal-ion doping. The distribution of dopant atoms within the ZnO crystal strongly affects the optical and magnetic properties, making it crucial to comprehend the structure down to the atomic level. Our study reveals the dopant structure and its contents in Eu-doped ZnO nanosponges with up to 20% Eu-O clusters.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Department of Biomedical Technology, College of Applied Medical Sciences in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia.
Exosomes, which are considered nanoscale extracellular vesicles (EVs), are secreted by various cell types and widely distributed in different biological fluids. They consist of multifarious bioactive molecules and use systematic circulation for their transfer to adjoining cells. This phenomenon enables exosomes to take part in intercellular and intracellular communications.
View Article and Find Full Text PDFACS Nano
January 2025
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
Aqueous zinc-ion batteries promise low-cost and safe grid storage, but their practical application is hindered by poor Zn anode reversibility, primarily due to dendrite formation and water-induced side reactions in the electric double layer (EDL) structure. Herein, a monolayer of hydrophobic carbon dots (CDs) was dynamically constructed at the electrode/electrolyte interface. The trace-added hydrophobic CDs in the electrolyte reconstruct a hydrophobic and favorable EDL structure, suppressing water-induced side reactions in the inner Helmholtz layer and facilitating the desolvation of hydrated zinc ions at the outer Helmholtz layer.
View Article and Find Full Text PDFDalton Trans
January 2025
Laboratory for Molecular & Functional Design, Department of Engineering, Nara Women's University, Nara 630-8506, Japan.
Rational molecular design afforded fluorescent Cd sensors based on bisquinoline derivatives. Introduction of three methoxy groups at the 5,6,7-positions of the quinoline rings of BQDMEN (,'-bis(2-quinolylmethyl)-,'-dimethylethylenediamine) resulted in the reversal of metal ion selectivity in fluorescence enhancement from zinc to cadmium. Introduction of bulky alkyl groups and an ,-bis(2-quinolylmethyl)amine structure, as well as replacement of one of the two tertiary amine binding sites with an oxygen atom and the use of a 1,2-phenylene backbone significantly improved the Cd specificity.
View Article and Find Full Text PDFNanoscale
January 2025
J. Heyrovský Institute of Physical Chemistry, Czech Acad. Sci., Dolejškova 3, CZ-18200, Prague 8, Czech Republic.
Compositionally complex doping of spinel oxides toward high-entropy oxides is expected to enhance their electrochemical performance substantially. We successfully prepared high-entropy compounds, the oxide (ZnMgCoCu)FeO (HEOFe), lithiated oxyfluoride Li(ZnMgCoCu)FeOF (LiHEOFeF), and lithiated oxychloride Li(ZnMgCoCu)FeOCl (LiHEOFeCl) with a spinel-based cubic structure by ball milling and subsequent heat treatment. The products exhibit particles with sizes from 50 to 200 nm with a homogeneous atomic distribution.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!