This study aimed to evaluate the use of green microalgae as a nutritional supplement for oocyte and embryo production in goats. Two experiments were performed on adult goats to obtain oocytes (EVO; n = 14) and in vivo embryos (IVD; n = 14). In both, the donors were divided into control (n = 7) and Chlorella (n = 7) groups. All goats received a base diet, and donors were orally supplemented with Chlorella pyrenoidosa (CH) in the Chlorella groups. For EVO, donors received 10 g CH for 14 days, and for IVD, 20 g CH was given for six days before embryo recovery. In EVO and IVD, food intake in the CH group was comparatively low, and it showed relatively high subcutaneous adipose deposition. In addition, the CH group exhibited an increase in triglyceride, cholesterol, and plasma glucose levels. In IVD, a significant increase in peripheral glutathione peroxidase levels was noticed. In EVO, the CH group showed relatively large follicular size and an increase in intrafollicular levels of triglycerides, glucose, and glutathione peroxidase. No differences were observed in the oocyte collected, and CH oocytes showed a low intensity of MitoTracker fluorescence (MT). In IVD, the CH group had a high proportion of transferable embryos, and these structures exhibited high fluorescence intensities for MT and HDCFDA probes. We concluded that under these conditions, CH did not enhance the quality of the recovered oocytes. However, a daily dose of 20 g CH improved the quality of embryos and stimulated their mitochondrial functionality.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.anireprosci.2023.107296DOI Listing

Publication Analysis

Top Keywords

green microalgae
8
nutritional supplement
8
oocyte embryo
8
embryo production
8
production goats
8
glutathione peroxidase
8
ivd
5
chlorella
4
microalgae chlorella
4
chlorella nutritional
4

Similar Publications

Ensuring everyone enjoys healthy lifestyles and well-being at all ages, Progress has been made in increasing access to clean water and sanitation facilities and reducing the spread of epidemics and diseases. The synthesis of nano-particles (NPs) by using microalgae is a new nanobiotechnology due to the use of the biomolecular (corona) of microalgae as a capping and reducing agent for NP creation. This investigation explores the capacity of a distinct indigenous microalgal strain to synthesize silver nano-particles (AgNPs), as well as its effectiveness against multi-drug resistant (MDR) bacteria and its ability to degrade Azo dye (Methyl Red) in wastewater.

View Article and Find Full Text PDF

When microplastics meet microalgae: Unveiling the dynamic formation of aggregates and their impact on toxicity and environmental health.

Water Res

December 2024

Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China; School of Environmental Science and Engineering, Hainan University, Haikou 570228, China; College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.

Microplastics (MPs) commonly coexist with microalgae in aquatic environments, can heteroaggregate during their interaction, and potentially affect the migration and impacts of MPs in aquatic environments. The hetero-aggregation may also influence the fate of other pollutants through MPs' adsorption or alter their aquatic toxicity. Here, we explored the hetero-aggregation process and its key driving mechanism that occurred between green microalga Chlorella vulgaris (with a cell size of 2-10 μm) and two types of MPs (polystyrene and polylactide, 613 μm).

View Article and Find Full Text PDF

The green microalga Chlamydomonas reinhardtii is a promising host organism for the production of valuable compounds. Engineering the Chlamydomonas chloroplast genome offers several advantages over the nuclear genome, including targeted gene insertion, lack of silencing mechanisms, potentially higher protein production due to multiple genome copies and natural substrate abundance for metabolic engineering. Tuneable expression systems can be used to minimize competition between heterologous production and host cell viability.

View Article and Find Full Text PDF

In this study, a novel adsorbent called Ca@SP was developed by immobilizing microalgae protein (Spirulina platensis, SP) in an alginate matrix for enhanced Pb²⁺ removal from aqueous solutions. Synthesized via in situ crosslinking, Ca@SP leverages the synergistic effects of alginate's gel-forming ability and SP's N-rich biomass. Characterization of Ca@SP revealed a green spherical hydrogel with a BET specific surface area of 159.

View Article and Find Full Text PDF

Cytotoxic Effects of ZnO and Ag Nanoparticles Synthesized in Microalgae Extracts on PC12 Cells.

Mar Drugs

December 2024

Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy.

The green synthesis of silver (Ag) and zinc oxide (ZnO) nanoparticles (NPs), as well as Ag/AgO/ZnO nanocomposites (NCs), using polar and apolar extracts of , offers a sustainable method for producing nanomaterials with tunable properties. The impact of the synthesis environment and the nanomaterials' characteristics on cytotoxicity was evaluated by examining reactive species production and their effects on mitochondrial bioenergetic functions. Cytotoxicity assays on PC12 cells, a cell line originated from a rat pheochromocytoma, an adrenal medulla tumor, demonstrated that Ag/AgO NPs synthesized with apolar (Ag/AgO NPs A) and polar (Ag/AgO NPs P) extracts exhibited significant cytotoxic effects, primarily driven by Ag ion release and the disruption of mitochondrial function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!