Quantitative image analysis of microplastics in bottled water using artificial intelligence.

Talanta

Wageningen Food Safety Research, Wageningen University & Research, Akkermaalsbos 2, 6708 WB, Wageningen, the Netherlands; Wageningen University, Laboratory of Organic Chemistry, Stippeneng 4, 6708 WE, Wageningen, the Netherlands.

Published: January 2024

The ubiquitous occurrence of microplastics (MPs) in the environment and the use of plastics in packaging materials result in the presence of MPs in the food chain and exposure of consumers. Yet, no fully validated analytical method is available for microplastic (MP) quantification, thereby preventing the reliable estimation of the level of exposure and, ultimately, the assessment of the food safety risks associated with MP contamination. In this study, a novel approach is presented that exploits interactive artificial intelligence tools to enable automation of MP analysis. An integrated method for the analysis of MPs in bottled water based on Nile Red staining and fluorescent microscopy was developed and validated, featuring a partial interrogation of the filter and a fully automated image processing workflow based on a Random Forest classifier, thereby boosting the analysis speed. The image analysis provided particle count, size and size distribution of the MPs. From these data, a rough estimation of the mass of the individual MPs, and consequently of the MP mass concentration in the sample, could be obtained as well. Critical materials, method performance characteristics, and final applicability were studied in detail. The method showed to be highly sensitive in sizing MPs down to 10 μm, with a particle count limit of detection and quantification of 28 and 85 items/500 mL, respectively. Linearity of mass concentration determined between 10 ppb and 1.5 ppm showed a regression coefficient (R) of 0.99. Method precision was demonstrated by a repeatability of 9-16% RSD (n = 7) and within-laboratory reproducibility of 15-27% RSD (n = 21). Accuracy based on recovery was 92 ± 15% and 98 ± 23% at a level of 0.1 and 1.0 ppm, respectively. The quantitative performance characteristics thus obtained complied with regulatory requirements. Finally, the method was successfully applied to the analysis of twenty commercial samples of bottled water, with and without gas and flavor additives, yielding results ranging from values below the limit of detection to 7237 (95% CI [6456, 8088]) items/500 mL.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2023.124965DOI Listing

Publication Analysis

Top Keywords

bottled water
12
image analysis
8
artificial intelligence
8
particle count
8
mass concentration
8
performance characteristics
8
limit detection
8
analysis
6
mps
6
method
6

Similar Publications

This study aimed to investigate whether activation of PPARγ regulates M1/M2 macrophage polarization to attenuate dextran sulfate sodium salt (DSS)-induced inflammatory bowel disease (IBD) via the STAT-1/STAT-6 pathway in vivo and in vitro. We first examined the effect of PPARγ on macrophage polarization in LPS/IFN-γ-treated M1 RAW264.7 cells and IL-4/IL-13-treated M2 RAW264.

View Article and Find Full Text PDF

Paratuberculosis is an infectious disease caused by subspecies (MAP). Typically, ruminant animals including cattle, buffalo, goats, and sheep are infected with MAP. Animals get infected with MAP in a number of ways, such as by eating or drinking contaminated food or water, or by nursing from an infected mother who may have contaminated teats or directly shed the organism in milk or colostrum.

View Article and Find Full Text PDF

Background: Humans are primary drivers of environmental-contaminant exposures worldwide, including in drinking-water (DW). In the United States, point-of-use DW (POU-DW) is supplied via private tapwater (TW), public-supply TW, and bottled water (BW). Differences in management, monitoring, and messaging and lack of directly-intercomparable exposure data influence the actual and perceived quality and safety of different DW supplies and directly impact consumer decision-making.

View Article and Find Full Text PDF

In the present study, two most commonly used Perfluoroalkyl substances (PFASs), namely perfluorooctanoic acid (PFOA) and perfluorooctanesulfonate (PFOS), were determined in 45 tap water samples from the city of Isfahan (Iran) by dispersive liquid-liquid extraction (DLLME) and liquid chromatography-mass spectrophotometry (LC-MS) analysis. Risk assessment was also performed to determine the risk to human health. The mean concentration of PFOA was 38.

View Article and Find Full Text PDF

Comprehensive evaluation of sodium dichloroisocyanurate (NaDCC) tablets as a novel solid-state alternative to conventional membrane cleaning agents in gravity-driven filtration systems.

Chemosphere

December 2024

Department of Environmental Research, Korea Institute of Civil Engineering and Building Technology, Gorang-Daero 283, Ilsanseo-Gu, Goyang, Gyeonggi 10223, Republic of Korea; Department of Civil and Environment Engineering, University of Science and Technology (UST), 217 Gajeong-Ro, Yuseong-Gu, Daejeon, 34113, Republic of Korea. Electronic address:

Gravity-driven membrane (GDM) systems are increasingly recognized as sustainable and energy-efficient solutions for decentralized water treatment. However, membrane fouling, particularly by organic matter, remains a significant operational challenge, necessitating regular chemical cleaning to maintain performance. The present study was undertaken to investigate the cleaning efficiency of sodium dichloroisocyanurate (NaDCC) tablets, a novel solid-state alternative to conventional liquid cleaning agents such as sodium hypochlorite (NaOCl), sodium lauryl sulfate (SLS), acetic acid, and citric acid.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!