Cyanobacteria are tremendous producers of biologically active natural products, including the potent anti-inflammatory compound tolypodiol. However, linking biosynthetic gene clusters with compound production in cyanobacteria has lagged behind that in other bacterial genera. Tolypodiol is a meroterpenoid originally isolated from the cyanobacterium HT-58-2. Here we describe the identification of the tolypodiol biosynthetic gene cluster through heterologous expression in and in vitro protein assays of a methyltransferase found in the tolypodiol biosynthetic gene cluster. We have also identified similar biosynthetic gene clusters in cyanobacterial and actinobacterial genomes, suggesting that meroterpenoids with structural similarity to the tolypodiols may be synthesized by other microbes. We also report the identification of two new analogs of tolypodiol that we have identified in both the original and heterologous producer. This work further illustrates the usefulness of as a heterologous expression host for cyanobacterial compounds and how integrated approaches can help to link natural product compounds with their producing biosynthetic gene clusters.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10529828PMC
http://dx.doi.org/10.1021/acschembio.3c00225DOI Listing

Publication Analysis

Top Keywords

biosynthetic gene
24
heterologous expression
12
tolypodiol biosynthetic
12
gene cluster
12
gene clusters
12
tolypodiol
6
biosynthetic
6
gene
6
identification heterologous
4
expression characterization
4

Similar Publications

Plant Coumarin Metabolism-Microbe Interactions: An Effective Strategy for Reducing Imidacloprid Residues and Enhancing the Nutritional Quality of Pepper.

J Agric Food Chem

December 2024

Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Ministry of Education, School of Tropical Agriculture and Forestry, Hainan University, Danzhou, Hainan 570228, PR China.

Imidacloprid (IMI) stress positively correlates with the potential of coumarins to alleviate abiotic stress. However, little is known about the pathways and mechanisms by which coumarin reduces the IMI residue by regulating plant secondary metabolism and plant-microbe interactions. This study examined the impact of coumarin on the uptake, translocation, and metabolism of IMI in pepper plants by modulating the signal molecule levels and microbial communities in the rhizosphere and phyllosphere.

View Article and Find Full Text PDF

Omics-driven onboarding of the carotenoid producing red yeast Xanthophyllomyces dendrorhous CBS 6938.

Appl Microbiol Biotechnol

December 2024

Life Sciences and Bioengineering Center, Department of Chemical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA.

Transcriptomics is a powerful approach for functional genomics and systems biology, yet it can also be used for genetic part discovery. Here, we derive constitutive and light-regulated promoters directly from transcriptomics data of the basidiomycete red yeast Xanthophyllomyces dendrorhous CBS 6938 (anamorph Phaffia rhodozyma) and use these promoters with other genetic elements to create a modular synthetic biology parts collection for this organism. X.

View Article and Find Full Text PDF

Human succinic semialdehyde dehydrogenase is a mitochondrial enzyme fundamental in the neurotransmitter γ-aminobutyric acid catabolism. It catalyzes the NAD-dependent oxidative degradation of its derivative, succinic semialdehyde, to succinic acid. Mutations in its gene lead to an inherited neurometabolic rare disease, succinic semialdehyde dehydrogenase deficiency, characterized by mental and developmental delay.

View Article and Find Full Text PDF

Discovery of a Chimeric Polyketide Family as Cancer Immunogenic Chemotherapeutic Leads.

J Am Chem Soc

December 2024

Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States.

Discovery of cancer immunogenic chemotherapeutics represents an emerging, highly promising direction for cancer treatment that uses a chemical drug to achieve the efficacy of both chemotherapy and immunotherapy. Herein, we report a high-throughput screening platform and the subsequent discovery of a new class of cancer immunogenic chemotherapeutic leads. Our platform integrates informatics-based activity metabolomics for the rapid identification of microbial natural products with both novel structures and potent activities.

View Article and Find Full Text PDF

Annual Banned-Substance Review 17th Edition-Analytical Approaches in Human Sports Drug Testing 2023/2024.

Drug Test Anal

December 2024

Center for Preventive Doping Research, Institute of Biochemistry, German Sport University Cologne, Cologne, Germany.

The 17th edition of the annual banned-substance review on analytical approaches in human sports drug testing is dedicated to literature published between October 2023 and September 2024. As in previous years, focus is put particularly on new or enhanced analytical options in human doping controls as well as investigations into the metabolism and elimination of compounds of interest, which represent central (while not exclusive) cornerstones of the global anti-doping mission. New information published within the past 12 months on established doping agents as well as new potentially relevant substances are reviewed and discussed in the context of the World Anti-Doping Agency's 2024 Prohibited List.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!