Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease characterized by progressive lung scarring and remodeling. Although treatments exist that slow disease progression, IPF is irreversible, and there is no cure. Cellular senescence, a major hallmark of aging, has been implicated in IPF pathogenesis, and mitochondrial dysfunction is increasingly recognized as a driver of senescence. Adenine nucleotide translocases (ANTs) are abundant mitochondrial ATP-ADP transporters critical for regulating cell fate and maintaining mitochondrial function. We sought to determine how alterations in ANTs influence cellular senescence in pulmonary fibrosis. We found that (solute carrier family 25 member 4) (ANT1) and (ANT2) expression is reduced in the lungs of patients with IPF, particularly within alveolar type II (AT2) cells, by single-cell RNA sequencing and tissue staining. Loss of ANT1 by siRNA in lung epithelial cells resulted in increased senescence markers such as β-galactosidase and p21, with a reduction in the ratio of nicotinamide adenine dinucleotide to reduced nicotinamide adenine dinucleotide. Bleomycin-treated ANT1 knockdown cells also had increased senescence markers compared with bleomycin-treated control cells. Loss of ANT1 in AT2 cells resulted in a reduction in alveolar organoid growth, with an increase in p21 by staining. Global loss of ANT1 resulted in worse lung fibrosis and increased senescence in the bleomycin- and asbestos-induced mouse models of pulmonary fibrosis. In summary, loss of ANT1 contributes to IPF pathogenesis through mitochondrial dysfunction, increased senescence, and decreased regenerative capacity of AT2 cells, resulting in enhanced lung fibrosis. Modulation of ANTs presents a new therapeutic avenue that may alter cellular senescence pathways and limit pulmonary fibrosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10633847 | PMC |
http://dx.doi.org/10.1165/rcmb.2022-0315OC | DOI Listing |
Neurochem Res
November 2024
Department of Epidemiology, Dalian Medical University, Dalian, 116044, China.
Am J Respir Cell Mol Biol
November 2023
Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.
Idiopathic pulmonary fibrosis (IPF) is an interstitial lung disease characterized by progressive lung scarring and remodeling. Although treatments exist that slow disease progression, IPF is irreversible, and there is no cure. Cellular senescence, a major hallmark of aging, has been implicated in IPF pathogenesis, and mitochondrial dysfunction is increasingly recognized as a driver of senescence.
View Article and Find Full Text PDFIUBMB Life
November 2023
Department of Biochemistry and Molecular Biology, Norton College of Medicine, State University of New York Upstate Medical University, Syracuse, New York, USA.
Adenine nucleotide translocase (ANT) is the prototypical member of the mitochondrial carrier protein family, primarily involved in ADP/ATP exchange across the inner mitochondrial membrane. Several carrier proteins evolutionarily related to ANT, including SLC25A24 and SLC25A25, are believed to promote the exchange of cytosolic ATP-Mg with phosphate in the mitochondrial matrix. They allow a net accumulation of adenine nucleotides inside mitochondria, which is essential for mitochondrial biogenesis and cell growth.
View Article and Find Full Text PDFPlant Physiol
May 2022
Department of Plant Physiology, University of Kaiserslautern, Kaiserslautern 67653, Germany.
The endoplasmic reticulum (ER)-located ATP/ADP-antiporter (ER-ANT1) occurs specifically in vascular plants. Structurally different transporters mediate energy provision to the ER, but the cellular function of ER-ANT1 is still unknown. Arabidopsis (Arabidopsis thaliana) mutants lacking ER-ANT1 (er-ant1 plants) exhibit a photorespiratory phenotype accompanied by high glycine levels and stunted growth, pointing to an inhibition of glycine decarboxylase (GDC).
View Article and Find Full Text PDFCell Physiol Biochem
October 2020
Division of Cell Signalling and Immunology, Sir James Black Centre, School of Life Sciences, University of Dundee, Dundee, UK,
Background/aims: Sustained increases in the circulating concentration of saturated fatty acids (SFAs, e.g. palmitate (PA), as seen during obesity, induces a chronic low grade inflammatory state that has been linked to metabolic dysfunction in tissues such as skeletal muscle that is characterized by disturbances in mitochondrial function and heightened production of reactive oxygen species (ROS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!