Machine Learning Enables Prediction of Pyrrolysyl-tRNA Synthetase Substrate Specificity.

ACS Synth Biol

Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, Zhejiang, China.

Published: August 2023

Knowledge about the substrate scope for a given enzyme is informative for elucidating biochemical pathways and also for expanding applications of the enzyme. However, no general methods are available to accurately predict the substrate specificity of an enzyme. Pyrrolysyl-tRNA synthetase (PylRS) is a powerful tool for incorporating various noncanonical amino acids (NCAAs) into proteins, which enabled us to probe, image, rationally engineer, and evolve protein structure and function. However, the incorporation of a new NCAA typically requires the selection of large libraries of PylRS with randomized mutations at active sites, and this process requires multiple rounds of selection for each new substrate. Therefore, a single aminoacyl-tRNA synthetase with broad substrate promiscuity is ideal to facilitate widespread applications of the genetic NCAA incorporation technique. Herein, machine learning models were developed to predict the substrate specificity of PylRS to accept novel NCAAs that could be incorporated into proteins by three PylRS mutants. The models were built from a training set of 285 unique enzyme-substrate pairs of three PylRS mutants including IFRS, BtaRS, and MFRS against 95 NCAAs. The best BaggingTree (BT) model was then used for virtually screening a NCAAs library containing 1474 phenylalanine, tyrosine, tryptophan, and alanine analogues, and 156 NCAAs were predicted to be accepted by at least one of the three PylRS mutants. Then, 27 NCAAs including 24 positive and 3 negative substrates were experimentally tested for their activities, and 20 of the 24 positive substrates showed weak or strong activity and were accepted by at least one PylRS mutant, among which 11 NCAAs were never reported to be incorporated into proteins before. Three negative substrates did not show any activity. Experimental results suggested that the BT model provides a three-class classification accuracy of 0.69 and a binary classification accuracy of 0.86. This study expanded the substrate scope of three PylRS variants and provided a framework for developing machine learning models to predict substrate specificity of other PylRS variants.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acssynbio.3c00225DOI Listing

Publication Analysis

Top Keywords

substrate specificity
16
three pylrs
16
machine learning
12
predict substrate
12
pylrs mutants
12
pylrs
9
pyrrolysyl-trna synthetase
8
substrate
8
substrate scope
8
learning models
8

Similar Publications

Discovery of an Enzyme-Activated Fluorogenic Probe for Profiling of Acylaminoacyl-Peptide Hydrolase.

Anal Chem

January 2025

Department of Laboratory Medicine, School of Medicine, Yangtze University, Jingzhou 434023, P.R. China.

Acylaminoacyl-peptide hydrolase (APEH), a serine peptidase that belongs to the prolyl oligopeptidase (POP) family, catalyzes removal of N-terminal acetylated amino acid residues from peptides. As a key regulator of protein N-terminal acetylation, APEH was involved in many important physiological processes while its aberrant expression was correlated with progression of various diseases such as inflammation, diabetics, Alzheimer's disease (AD), and cancers. However, while emerging attention has been attracted in APEH-related disease diagnosis and drug discovery, the mechanisms behind APEH and related disease progression are still unclear; thus, further investigating the physiological role and function of APEH is of great importance.

View Article and Find Full Text PDF

Structure-Function Relationship of the β-Hairpin of HB27 Laccase.

Int J Mol Sci

January 2025

Departamento de Micro y Nanotecnologías, Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Cto. Exterior S/N, C.U., Coyoacán, Ciudad de México C.P. 04510, Mexico.

Thermus thermophilus HB27 laccase (Tth-Lac) is a thermostable enzyme that contains a β-hairpin (Ala292-Gln307) covering the substrate entrance. We analyzed the role of this β-hairpin in the enzymatic activity of Tth-Lac through three β-hairpin mutants: two variants without the β-hairpin (C1Tth-Lac and C2Tth-Lac) and one with a partially modified β-hairpin (P1Tth-Lac). Enzymatic activity was assayed with different substrates with and without copper.

View Article and Find Full Text PDF

Preparation of CHS-FeO@@ZIF-8 peroxidase-mimic with an ultra-thin hollow layer for ultrasensitive electrochemical detection of kanamycin.

Mikrochim Acta

January 2025

Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Huaiyin Institute of Technology, Huaian, 223003, P. R. China.

A highly sensitive and selective electrochemical biosensor was developed for the detection of kanamycin using a core-hollow-shell structured peroxidase-mimic nanozyme, CHS-Fe₃O₄@@ZIF-8. The synthesized CHS-FeO@@ZIF-8 was characterized with scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy. It was found that the CHS-FeO@@ZIF-8 exhibits excellent peroxidase-like activity due to  its ultra-thin hollow layer.

View Article and Find Full Text PDF

Cyclic dipeptides are produced by organisms across all domains of life, with many exhibiting anticancer and antimicrobial properties. Oxidations are often key to their biological activities, particularly C-C bond oxidation catalysed by tailoring enzymes including cyclodipeptide oxidases. These flavin-dependent enzymes are underexplored due to their intricate three-dimensional arrangement involving multiple copies of two distinct small subunits, and mechanistic details underlying substrate selection and catalysis are lacking.

View Article and Find Full Text PDF

[Expression and enzymatic characterization of a chitosanase with tolerance to a wide range of pH from ].

Sheng Wu Gong Cheng Xue Bao

January 2025

Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Urumqi 830017, Xinjiang, China.

To screen and identify a chitosanase with high stability, we cloned the chitosanase gene from with a high protease yield from the barren saline-alkali soil and expressed this gene in . The expressed chitosanase of . (BA-CSN) was purified by nickel-affinity column chromatography.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!