Ultrasound based estimation of fetal biometry is extensively used to diagnose prenatal abnormalities and to monitor fetal growth, for which accurate segmentation of the fetal anatomy is a crucial prerequisite. Although deep neural network-based models have achieved encouraging results on this task, inevitable distribution shifts in ultrasound images can still result in severe performance drop in real world deployment scenarios. In this article, we propose a complete ultrasound fetal examination system to deal with this troublesome problem by repairing and screening the anatomically implausible results. Our system consists of three main components: A routine segmentation network, a fetal anatomical key points guided repair network, and a shape-coding based selective screener. Guided by the anatomical key points, our repair network has stronger cross-domain repair capabilities, which can substantially improve the outputs of the segmentation network. By quantifying the distance between an arbitrary segmentation mask to its corresponding anatomical shape class, the proposed shape-coding based selective screener can then effectively reject the entire implausible results that cannot be fully repaired. Extensive experiments demonstrate that our proposed framework has strong anatomical guarantee and outperforms other methods in three different cross-domain scenarios.

Download full-text PDF

Source
http://dx.doi.org/10.1109/JBHI.2023.3298096DOI Listing

Publication Analysis

Top Keywords

cross-domain repair
8
ultrasound fetal
8
fetal biometry
8
segmentation network
8
anatomical key
8
key points
8
repair network
8
shape-coding based
8
based selective
8
selective screener
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!