Background: Decline in language has emerged as a new potential biomarker for the early detection of Alzheimer's disease (AD). It remains unclear how sensitive language measures are across different tasks, language domains, and languages, and to what extent changes can be reliably detected in early stages such as subjective cognitive decline (SCD) and mild cognitive impairment (MCI).

Method: Using a scene construction task for speech elicitation in a new Spanish/Catalan speaking cohort ( = 119), we automatically extracted features across seven domains, three acoustic (spectral, cepstral, and voice quality), one prosodic, and three from text (morpholexical, semantic, and syntactic). They were forwarded to a random forest classifier to evaluate the discriminability of participants with probable AD dementia, amnestic and nonamnestic MCI, SCD, and cognitively healthy controls. Repeated-measures analyses of variance and paired-samples Wilcoxon signed-ranks test were used to assess whether and how performance differs significantly across groups and linguistic domains.

Results: The performance scores of the machine learning classifier were generally satisfactorily high, with the highest scores over .9. Model performance was significantly different for linguistic domains ( < .001), and speech versus text ( = .043), with speech features outperforming textual features, and voice quality performing best. High diagnostic classification accuracies were seen even within both cognitively healthy (controls vs. SCD) and MCI (amnestic and nonamnestic) groups.

Conclusion: Speech-based machine learning is powerful in detecting cognitive decline and probable AD dementia across a range of different feature domains, though important differences exist between these domains as well.

Supplemental Material: https://doi.org/10.23641/asha.23699733.

Download full-text PDF

Source
http://dx.doi.org/10.1044/2023_AJSLP-22-00403DOI Listing

Publication Analysis

Top Keywords

cognitive decline
12
decline probable
8
language domains
8
voice quality
8
probable dementia
8
amnestic nonamnestic
8
cognitively healthy
8
healthy controls
8
machine learning
8
domains
6

Similar Publications

Impaired muscle mitochondrial oxidative capacity is associated with future cognitive impairment, and higher levels of PET and blood biomarkers of Alzheimer's disease and neurodegeneration. Here, we examine its associations with up to over a decade-long changes in brain atrophy and microstructure. Higher in vivo skeletal muscle oxidative capacity via MR spectroscopy (post-exercise recovery rate, k) is associated with less ventricular enlargement and brain aging progression, and less atrophy in specific regions, notably primary sensorimotor cortex, temporal white and gray matter, thalamus, occipital areas, cingulate cortex, and cerebellum white matter.

View Article and Find Full Text PDF

Reconfiguration of brain network dynamics in bipolar disorder: a hidden Markov model approach.

Transl Psychiatry

December 2024

School of Computer Science and Technology (School of Data Science), Taiyuan University of Technology, Taiyuan, 030024, China.

Bipolar disorder (BD) is a neuropsychiatric disorder characterized by severe disturbance and fluctuation in mood. Dynamic functional connectivity (dFC) has the potential to more accurately capture the evolving processes of emotion and cognition in BD. Nevertheless, prior investigations of dFC typically centered on larger time scales, limiting the sensitivity to transient changes.

View Article and Find Full Text PDF

Background: Atrial fibrillation (AF) is associated with cognitive decline. Use of oral anticoagulant (OAC) medications offers a lower risk of dementia, but it is unclear whether differences exist between types of OAC agents.

Objective: This was a secondary analysis to explore whether the progression from normal cognition to mild cognitive impairment to dementia differs between adults with AF on warfarin versus non-vitamin K inhibitors medications (NOACs) using data extracted from the National Alzheimer's Coordinating Center clinical case series.

View Article and Find Full Text PDF

Background: Researchers have long been interested in identifying objective markers for problem drinking susceptibility informed by the environments in which individuals drink. However, little is known of objective cognitive-behavioral indices relevant to the social contexts in which alcohol is typically consumed. Combining group-based alcohol administration, eye-tracking technology, and longitudinal follow-up over a 2-year span, the current study examined the role of social attention in predicting patterns of problem drinking over time.

View Article and Find Full Text PDF

Background And Objective: Recently, RAB32 has been identified as possibly linked to Parkinson's disease. We studied the prevalence and clinical correlates of the p.Ser71Arg variant in the RAB32 gene in a large case series of Italian patients with Parkinson's disease or atypical parkinsonism.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!