Purpose: The primary goal of this study was to examine changes in peak insole force and cumulative weighted peak force (CWPF)/km with increased step rate in collegiate runners. The secondary goal was to determine whether sacral acceleration correlates with insole force when increasing step rate.
Methods: Twelve collegiate distance runners ran 1000 m outdoors at 3.83 m·s -1 at preferred and 10% increased step rates while insole force and sacral acceleration were recorded. Cumulative weighted peak force/km was calculated from insole force based on cumulative damage models. The effects of step rate on peak insole force and CWPF·km -1 were tested using paired t tests or Wilcoxon tests. Correlation coefficients between peak axial (approximately vertical) sacral acceleration times body mass and peak insole force were calculated on cohort and individual levels.
Results: Peak insole force and CWPF·km -1 decreased ( P < 0.001) with increased step rate. Peak axial sacral acceleration did not correlate with peak insole force on the cohort level ( r = 0.35, P = 0.109) but did within individuals (mean, r = 0.69-0.78; P < 0.05).
Conclusions: Increasing step rate may reduce peak vGRF and CWPF·km -1 in collegiate runners. Therefore, clinicians should consider step rate interventions to reduce peak and cumulative vGRF in this population. Individual-specific calibrations may be required to assess changes in peak vGRF in response to increasing step rate using wearable accelerometers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1249/MSS.0000000000003261 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!