A silica zeolite (RWZ-1) with a very high framework density (FD) was synthesized from highly crystalline natural layered silicate magadiite, bridging the gap between the two research areas of zeolites and dense silica polymorphs. Magadiite was topotactically converted into a 3D framework through two-step heat treatment. The resulting structure had a 1D micropore system of channel-like cavities with an FD of 22.1 Si atoms/1000 Å . This value is higher than those of all other silica zeolites reported so far, approaching those of silica polymorphs (tridymite (22.6) and α-quartz (26.5)). RWZ-1 is a slight negative thermal expansion material with thermal properties approaching those of dense silica polymorphs. It contributes to the creation of a new field on microporous high-density silica/silicates. Synergistic interactions are expected between the micropores with molecular sieving properties and the dense layer-like building units with different topologies which provide thermal and mechanical stabilities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.202301942 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!