Sarcopenia, the age-related loss of muscle strength and mass or quality, is a common condition with major adverse consequences. Although the pathophysiology is incompletely understood, there are common mechanisms between sarcopenia and the phenomenon of accelerated ageing seen in diabetes mellitus. Drugs currently used to treat type 2 diabetes mellitus may have mechanisms of action that are relevant to the prevention and treatment of sarcopenia, for those with type 2 diabetes and those without diabetes. This review summarises shared pathophysiology between sarcopenia and diabetes mellitus, including the effects of advanced glycation end products, mitochondrial dysfunction, chronic inflammation and changes to the insulin signalling pathway. Cellular and animal models have generated intriguing, albeit mixed, evidence that supports possible beneficial effects on skeletal muscle function for some classes of drugs used to treat diabetes, including metformin and SGLT2 inhibitors. Most human observational and intervention evidence for the effects of these drugs has been derived from populations with type 2 diabetes mellitus, and there is a need for intervention studies for older people with, and at risk of, sarcopenia to further investigate the balance of benefit and risk in these target populations. Not all diabetes treatments will be safe to use in those without diabetes because of variable side effects across classes. However, some agents [including glucagon-like peptide (GLP)-1 receptor agonists and SGLT2 inhibitors] have already demonstrated benefits in populations without diabetes, and it is these agents, along with metformin, that hold out the most promise for further investigation in sarcopenia.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10371965 | PMC |
http://dx.doi.org/10.1007/s40266-023-01042-4 | DOI Listing |
Sci Rep
January 2025
School of Sports and Health, Nanjing Sport Institute, Nanjing, China.
Mitochondrial function is crucial for hepatic lipid metabolism. Current research identifies two types of mitochondria based on their contact with lipid droplets: peridroplet mitochondria (PDM) and cytoplasmic mitochondria (CM). This work aimed to investigate the alterations of CM and PDM in metabolic dysfunction-associated steatotic liver disease (MASLD) induced by spontaneous type-2 diabetes mellitus (T2DM) in db/db mice.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Endocrinology and Metabolism, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
With the rapid advancement of proteomics, numerous scholars have investigated the intricate relationships between plasma proteins and various diseases. Therefore, this study aims to elucidate the relationship between BDH1 and type 2 diabetes using Mendelian randomization (MR) and to identify novel targets for the prevention and treatment of type 2 diabetes through proteomics. This study primarily employed the Mendelian Randomization (MR) method, leveraging genetic data from numerous large-scale, publicly accessible genome-wide association studies (GWAS).
View Article and Find Full Text PDFSci Rep
January 2025
Innovation Centre of Nursing Research, TaiHe Hospital, Hubei University of Medicine, Shiyan, Hubei, China.
The literature has documented conflicting and inconsistent associations between muscle-to-fat ratios and metabolic diseases. Additionally, different adipose tissues can have contrasting effects, with visceral adipose tissue being identified as particularly harmful. This study aimed to explore the relationship between the ratio of the lean mass index (LMI) to the visceral fat mass index (VFMI) and cardiometabolic disorders, including dyslipidemia, hypertension, and diabetes, as previous research on this topic is lacking.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Prannok Road, Bangkok Noi, Bangkok, 10700, Thailand.
Tinea manuum is a superficial fungal infection affecting the hands, particularly the palms and interdigital areas. This retrospective study investigated clinical features, laboratory findings, treatment, and outcomes in patients with fungal hand infections at Siriraj Hospital between 2016 and 2020. Among 107 patients, representing 1.
View Article and Find Full Text PDFJ Biophotonics
January 2025
Britton Chance Center for Biomedical Photonics-MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan, China.
Diabetes mellitus (DM), a chronic metabolic disorder that adversely affects the blood-brain barrier (BBB) and microglial function in the central nervous system (CNS), contributing to neuronal damage and neurodegenerative diseases. However, the underlying molecular mechanisms linking diabetes to BBB dysfunction and microglial dysregulation remain poorly understood. Here, we assessed the impacts of diabetes on BBB and microglial reactivity and investigated its mechanisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!