Boosting SARS-CoV-2 Enrichment with Ultrasmall Immunomagnetic Beads Featuring Superior Magnetic Moment.

Anal Chem

High Magnetic Field Laboratory, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, P. R. China.

Published: August 2023

The isolation and enrichment efficiency of SARS-CoV-2 virus in complex biological environments is often relatively low, presenting challenges in direct detection and an increased risk of false negatives, particularly during the early stages of infection. To address this issue, we have developed a novel approach using ultrasmall magnetosome-like nanoparticles (≤10 nm) synthesized via biomimetic mineralization of the Mms6 protein derived from magnetotactic bacteria. These nanoparticles are surface-functionalized with hydrophilic carboxylated polyethylene glycol (mPEG2000-COOH) to enhance water solubility and monodispersity. Subsequently, they are coupled with antibodies targeting the receptor-binding domain (RBD) of the virus. The resulting magnetosome-like immunomagnetic beads (Mal-IMBs) exhibit high magnetic responsiveness comparable to commercial magnetic beads, with a saturation magnetization of 90.6 emu/g. Moreover, their smaller particle size provides a significant advantage by offering a higher specific surface area, allowing for a greater number of RBD single-chain fragment variable (RBD-scFv) antibodies to be coupled, thereby enhancing immune capture ability and efficiency. To validate the practicality of Mal-IMBs, we evaluated their performance in recognizing the RBD antigens, achieving a maximum capture ability of 83 μg/mg per unit mass. Furthermore, we demonstrated the binding capability of Mal-IMBs to SARS-CoV-2 pseudovirus using fluorescence microscopy. The Mal-IMBs effectively enriched the pseudovirus at a low copy concentration of 70 copies/mL. Overall, the small Mal-IMB exhibited excellent magnetic responsiveness and binding efficiency. By employing a multisite virus binding mechanism, it significantly improves the enrichment and separation of SARS-CoV-2 in complex environments, facilitating rapid detection of COVID-19 and contributing to effective measures against its spread.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.3c02257DOI Listing

Publication Analysis

Top Keywords

immunomagnetic beads
8
magnetic responsiveness
8
capture ability
8
boosting sars-cov-2
4
sars-cov-2 enrichment
4
enrichment ultrasmall
4
ultrasmall immunomagnetic
4
beads featuring
4
featuring superior
4
magnetic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!