Hydrogen evolution reaction (HER) coupled with biomass conversion is a sustainable route to produce clean energy H and value-added chemicals simultaneously. Herein, an amorphous Ni-Mo-B-O bifunctional electrocatalyst was synthesized through a facile electrodeposition method and employed as a cathode for HER to produce H and as an anode for the conversion of hydroxymethylfurfural (HMF) to furandicarboxylic acid (FDCA). Besides leading to the formation of amorphous structures, the introduction of Mo and B can increase the electron density and optimize the electronic structure of the electrocatalyst, thus substantially increasing the catalytic activity of the catalyst. After continuous reaction at a constant potential of 0.58 V vs. Hg/HgO for 8 hours, the conversion of HMF reached 98.86 %, and the selectivity of the target product FDCA was as high as 92.97 %. Finally, a two-electrolyzer system was constructed using the amorphous Ni-Mo-B-O as both cathode and anode to achieve simultaneous H production in the cathode chamber and FDCA production in the anode chamber at a low voltage. This work presents a promising strategy for the design and synthesis of high-performance non-noble metal electrocatalysts for efficient and cost-effective H production.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cplu.202300285DOI Listing

Publication Analysis

Top Keywords

amorphous ni-mo-b-o
12
ni-mo-b-o bifunctional
8
bifunctional electrocatalyst
8
simultaneous production
8
value-added chemicals
8
amorphous
4
electrocatalyst simultaneous
4
production
4
production hydrogen
4
hydrogen value-added
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!