Trichomonas vaginalis is an extracellular protozoan parasite of the human urogenital tract, responsible for a prevalent sexually transmitted infection. Trichomoniasis is accompanied by a dysbiotic microbiome that is characterised by the depletion of host-protective commensals such as Lactobacillus gasseri, and the flourishing of a bacterial consortium that is comparable to the one seen for bacterial vaginosis, including the founder species Gardnerella vaginalis. These two vaginal bacteria are known to have opposite effects on T. vaginalis pathogenicity. Studies on extracellular vesicles (EVs) have been focused on the direction of a microbial producer (commensal or pathogen) to a host recipient, and largely in the context of the gut microbiome. Here, taking advantage of the simplicity of the human cervicovaginal microbiome, we determined the molecular cargo of EVs produced by L. gasseri and G. vaginalis and examined how these vesicles modulate the interaction of T. vaginalis and host cells. We show that these EVs carry a specific cargo of proteins, which functions can be attributed to the opposite roles that these bacteria play in the vaginal biome. Furthermore, these bacterial EVs are delivered to host and protozoan cells, modulating host-pathogen interactions in a way that mimics the opposite effects that these bacteria have on T. vaginalis pathogenicity. This is the first study to describe side-by-side the protein composition of EVs produced by two bacteria belonging to the opposite spectrum of a microbiome and to demonstrate that these vesicles modulate the pathogenicity of a protozoan parasite. Such as in trichomoniasis, infections and dysbiosis co-occur frequently resulting in significant co-morbidities. Therefore, studies like this provide the knowledge for the development of antimicrobial therapies that aim to clear the infection while restoring a healthy microbiome.

Download full-text PDF

Source
http://dx.doi.org/10.1111/mmi.15130DOI Listing

Publication Analysis

Top Keywords

lactobacillus gasseri
8
vaginalis
8
gardnerella vaginalis
8
extracellular vesicles
8
protozoan parasite
8
opposite effects
8
vaginalis pathogenicity
8
evs produced
8
vesicles modulate
8
microbiome
6

Similar Publications

Lactobacillus gasseri prevents ibrutinib-associated atrial fibrillation through butyrate.

Europace

January 2025

Department of Cardiology, the First Affiliated Hospital, Harbin Medical University, Harbin 150001, China.

Ibrutinib, a widely used anti-cancer drug, is known to significantly increase the susceptibility to atrial fibrillation (AF). While it is recognized that drugs can reshape the gut microbiota, influencing both therapeutic effectiveness and adverse events, the role of gut microbiota in ibrutinib-induced AF remains largely unexplored. Utilizing 16S rRNA gene sequencing, fecal microbiota transplantation, metabonomics, electrophysiological examination, and molecular biology methodologies, we sought to validate the hypothesis that gut microbiota dysbiosis promotes ibrutinib-associated AF and to elucidate the underlying mechanisms.

View Article and Find Full Text PDF

Bacteriocins, naturally derived antimicrobial peptides, are considered promising alternatives to traditional preservatives and antibiotics, particularly in food and medical applications. Despite extensive research on various bacteriocins, cyclic varieties remain understudied. This study introduces Gassericin GA-3.

View Article and Find Full Text PDF

The inflammatory bowel disease and gut microbiome are restored by employing metformin-loaded alginate-shelled microcapsules.

J Control Release

December 2024

Major of Human Bio-convergence, Division of Smart Healthcare, Pukyong National University, Busan 48513, Republic of Korea. Electronic address:

Inflammatory bowel disease (IBD) is a chronic or recurrent inflammatory disorder affecting various parts of the gastrointestinal tract. Metformin, a widely prescribed hypoglycemic drug for type 2 diabetes, has shown potential in reducing IBD risk. However, its oral administration faces significant challenges due to the harsh gastrointestinal environment, requiring higher or more frequent doses to achieve therapeutic effects, which increases the risk of side effects.

View Article and Find Full Text PDF

Preterm-birth-prevention with Lactobacillus crispatus oral probiotics: Protocol for a double blinded randomised placebo-controlled trial (the PrePOP study).

Contemp Clin Trials

December 2024

UCD Perinatal Research Centre, UCD School of Medicine, University College Dublin, National Maternity Hospital, Dublin 2, Ireland; National Maternity Hospital, Dublin 2, Ireland. Electronic address:

Introduction: Effective spontaneous preterm birth (sPTB) prevention is an urgent unmet clinical need. Vaginal depletion of Lactobacillus crispatus is linked to sPTB. This trial will investigate impact of an oral Lactobacillus spp.

View Article and Find Full Text PDF

Electrospun nanofibers offer a highly promising platform for the delivery of vaginal lactobacilli, providing an innovative approach to preventing and treating vaginal infections. To advance the application of nanofibers for the delivery of lactobacilli, tools for studying their safety and efficacy in vitro need to be established. In this study, fluorescent (mCherry and GFP) and luminescent (NanoLuc luciferase) proteins were expressed in three vaginal lactobacilli (Lactobacillus crispatus, Lactobacillus gasseri and Lactobacillus jensenii) and a control Lactiplantibacillus plantarum with the aim to use this technology for close tracking of lactobacilli release from nanofibers and their adhesion on epithelial cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!