Melatonin is a powerful biological agent that has been shown to inhibit angiogenesis and also exerts anti-inflammatory effects. It is well known that new blood vessel formation (angiogenesis) has become an urgent issue in leukemia as well as solid tumors. Acute promyelocytic leukemia (APL) is a form of liquid cancer that manifests increased angiogenesis in the bone marrow of patients. Despite high-rate curable treatment with all-trans-retinoic acid (ATRA) and recently arsenic-trioxide (ATO), early death because of hemorrhage, coagulopathy, and Disseminated intravascular coagulation (DIC) remains still a concerning issue in these patients. It is, therefore, urgent to seek treatment strategies with antiangiogenic capabilities that also diminish coagulopathy and hyperfibrinolysis in APL patients. In this study, a coculture system with human umbilical vein endothelial cells (HUVECs) and NB4 APL cells was used to investigate the direct effect of melatonin on angiogenesis and its possible action on tissue factor (TF) and tissue-type plasminogen activator-1 (TPA-1) expression. Our experiments revealed that HUVEC-induced angiogenesis by cocultured NB4 cells was suppressed when melatonin alone or in combination with ATRA was added to the incubation medium. Melatonin at concentrations of 1 mM inhibited tube formation of HUVECs and also decreased interleukin-6 secretion and VEGF mRNA expression in HUVEC and NB4 cells. Taken together, the results of this study demonstrate that melatonin inhibits accelerated angiogenesis of HUVECs and ameliorates the coagulation and fibrinolysis indices stimulated by coculturing with NB4 cells.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jpi.12901DOI Listing

Publication Analysis

Top Keywords

nb4 cells
12
acute promyelocytic
8
promyelocytic leukemia
8
angiogenesis
7
melatonin
6
nb4
5
cells
5
angiogenesis coagulation
4
coagulation fibrinolytic
4
fibrinolytic markers
4

Similar Publications

A novel therapeutic strategy for leukopenia: Miltefosine activates the Ras/MEK/ERK pathway to promote neutrophil differentiation.

Biochem Biophys Res Commun

February 2025

Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, 646000, China. Electronic address:

Leukopenia, marked by diminished white blood cell (WBC) counts, presents significant challenges in the management of hematological malignancies and immunocompromised patients. This study evaluated the therapeutic potential of miltefosine (MFS), a phospholipid analogue, for treating leukopenia. In vitro studies using HL60 and NB4 cells revealed that MFS effectively promoted neutrophil differentiation and function, evidenced by the upregulation of surface markers CD11b, CD11c, CD14, and CD15, as well as enhanced bactericidal activity assessed through the NBT reduction assay.

View Article and Find Full Text PDF

Differentiation therapy with all-trans retinoic acid (ATRA) is well established for acute promyelocytic leukemia (APL). However, the narrow application and tolerance development of ATRA remain to be improved. A number of kinase inhibitors have been reported to induce cell differentiation.

View Article and Find Full Text PDF

Background: Acute myeloid leukemia (AML) is a heterogeneous hematological malignancy caused by disorders in stem cell differentiation and excessive proliferation resulting in clonal expansion of dysfunctional cells called myeloid blasts. The combination of chemotherapeutic agents with natural product-based molecules is promising in the treatment of AML. In this study, we aim to investigate the anti-cancer effect of Rapamycin and Niacin combination on THP-1 and NB4 AML cell lines.

View Article and Find Full Text PDF

This study focused on the interplay between NADPH oxidase 2 (NOX 2) activation and mitochondrial superoxide (mitoO) formation induced by clinically relevant concentrations of arsenic trioxide (ATO; AsO) in acute promyelocytic leukemia (APL) cells. Carefully controlled inhibitor studies and small interfering RNA mediated downregulation of p47 (a component of the NOX 2 complex) expression demonstrated that, in an APL cell line, ATO promotes upstream NOX 2 activation critically connected with the formation of mitoO and with the ensuing mitochondrial permeability transition (MPT)-dependent apoptosis. Instead, acute myeloid leukemia (AML) cell lines respond to ATO with low NOX 2 activation, resulting in a state that is non-permissive for mitoO formation.

View Article and Find Full Text PDF

Urinary tract infections (UTIs) are the second most prevalent infectious disease with being the most common etiological agent behind these infections, affecting more than 150 million people globally each year. In recent decades, the emergence of multi-drug resistant (MDR) pathogens has rapidly escalated. To combat antimicrobial resistance (AMR), it is important to synthesize new biologically effective alternatives like ionic liquids (ILs) to control the bacterial infection and their spread.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!