Background: Although malaria is endemic in some areas of southeastern Iran, following the successful national malaria elimination plan (NMEP), the local transmission area has been shrunk. This study was aimed to evaluate the effect of climate change on the distribution of main vectors.

Methods: All documents related to research investigations conducted in Kerman Province on malaria vectors published during 2000-2019 were retrieved from scientific databases. Spatial distributions of the main vectors were mapped and modeled using MaxEnt ecological model. The future environmental suitability for main vectors was determined under three climate changes scenarios in the 2030s.

Results: Five malaria vectors are present in Kerman Province. The best ecological niches for these vectors are located in the southern regions of the province under the current climatic condition as well as different climate change scenarios in the 2030s.

Conclusion: Climate change in 2030 will not have a significant impact on the distribution of malaria vectors in the region. Entomological monitoring is advised to update the spatial database of vectors of malaria in this malaria receptive region.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10362220PMC
http://dx.doi.org/10.18502/ijph.v52i5.12724DOI Listing

Publication Analysis

Top Keywords

climate change
16
malaria vectors
16
change distribution
8
distribution main
8
malaria
8
vectors
8
southeastern iran
8
kerman province
8
main vectors
8
modeling climate
4

Similar Publications

Environmental DNA (eDNA) analysis has become a popular conservation tool for detecting rare and elusive species. eDNA assays typically target mitochondrial DNA (mtDNA) due to its high copy number per cell and its ability to persist in the environment longer than nuclear DNA. Consequently, the development of eDNA assays has relied on mitochondrial reference sequences available in online databases, or in cases where such data are unavailable, de novo DNA extraction and sequencing of mtDNA.

View Article and Find Full Text PDF

Assessing how at-risk species respond to co-occurring stressors is critical for predicting climate change vulnerability. In this study, we characterized how young-of-the-year White Sturgeon () cope with warming and low oxygen (hypoxia) and investigated whether prior exposure to one stressor may improve the tolerance to a subsequent stressor through "cross-tolerance". Fish were acclimated to five temperatures within their natural range (14-22°C) for one month prior to assessment of thermal tolerance (critical thermal maxima, CTmax) and hypoxia tolerance (incipient lethal oxygen saturation, ILOS; tested at 20°C).

View Article and Find Full Text PDF

Current rates of habitat and biodiversity loss, and the threat they pose to ecological and economic productivity, would be considered a global emergency even if they were not occurring during a period of rapid anthropogenic climate change. Diversity at all levels of biological organization, both within and among species, and across genomes and communities, is critical for the resilience of the world's ecosystems in the face of such change. However, it remains an urgent scientific challenge to understand how biodiversity underpins these ecological outputs, how patterns of biodiversity are being affected by current threats, and how and where such biodiversity contributes most directly to human economies, well-being and social justice.

View Article and Find Full Text PDF

Food production does more damage to wild species than any other sector of human activity, yet how best to limit its growing impact is greatly contested. Reviewing progress to date in interventions that encourage less damaging diets or cut food loss and waste, we conclude that both are essential but far from sufficient. In terms of production, field studies from five continents quantifying the population-level impacts of land sharing, land sparing, intermediate and mixed approaches for almost 2000 individually assessed species show that implementing high-yield farming to spare natural habitats consistently outperforms land sharing, particularly for species of highest conservation concern.

View Article and Find Full Text PDF

Bending the curve of biodiversity loss requires a 'satnav' for nature.

Philos Trans R Soc Lond B Biol Sci

January 2025

Biodiversity Futures Lab, Natural History Museum, London SW7 5BD, UK.

Georgina Mace proposed bending the curve of biodiversity loss as a fitting ambition for the Convention on Biological Diversity. The new Global Biodiversity Monitoring Framework (GBMF) may increase the chances of meeting the goals and targets in the Kunming-Montreal Global Biodiversity Framework (KMGBF), which requires bending the curve. To meet the outcome goals of KMGBF, the GBMF should support adaptive policy responses to the state of biodiversity, which in turn requires a 'satnav' for nature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!