Modulation of existing drugs is an attractive strategy to achieve improved activity in cancer therapy by lowering their effective dose. Preparation of relatives has been suggested and explored to improve the therapeutic effect of anticancer agents. In the current study, we attempted to modulate tamoxifen (TMX) by replacing the -phenyl ring in its backbone with an indole or oxindole. In addition, it was possible to convert indole-modified tamoxifens to the corresponding 3,3'-bis(indolyl)methanes (BIMs) an electrophilic substitution reaction with various benzaldehydes. We analyzed the anticancer potential of these indole-modified tamoxifens against various breast cancer cell lines and identified certain tamoxifen relatives with the potential to treat estrogen receptor (ER)-positive breast cancers, based on preliminary results of cell viability and caspase activity assays. The indole-modified tamoxifen , , and selectively reduced the viability of receptor-sensitive breast cancer cells more effectively than tamoxifen and suppressed the expression of ER-regulated genes. Moreover, Caspase-8 activity showed a specific increase in MCF-7 cells treated with these compounds. Our results indicate that these compounds may be an alternative to tamoxifen for the treatment of breast cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10357932PMC
http://dx.doi.org/10.1039/d3md00157aDOI Listing

Publication Analysis

Top Keywords

breast cancer
12
indole-modified tamoxifen
8
tamoxifen relatives
8
anticancer agents
8
indole-modified tamoxifens
8
tamoxifen
6
design synthesis
4
synthesis biological
4
biological evaluation
4
indole-modified
4

Similar Publications

In this paper, the pH-sensitive targeting functional material NGR-poly(2-ethyl-2-oxazoline)-cholesteryl methyl carbonate (NGR-PEtOz-CHMC, NPC) modified quercetin (QUE) liposomes (NPC-QUE-L) was constructed. The structure of NPC was confirmed by infrared spectroscopy (IR) and nuclear magnetic resonance hydrogen spectrum (H-NMR). Pharmacokinetic results showed that the accumulation of QUE in plasma of the NPC-QUE-L group was 1.

View Article and Find Full Text PDF

Aim: Dynamic cancer control is a current health system priority, yet methods for achieving it are lacking. This study aims to review the application of system dynamics modeling (SDM) on cancer control and evaluate the research quality.

Methods: Articles were searched in PubMed, Web of Science, and Scopus from the inception of the study to November 15th, 2023.

View Article and Find Full Text PDF

Detection of biomarkers of breast cancer incurs additional costs and tissue burden. We propose a deep learning-based algorithm (BBMIL) to predict classical biomarkers, immunotherapy-associated gene signatures, and prognosis-associated subtypes directly from hematoxylin and eosin stained histopathology images. BBMIL showed the best performance among comparative algorithms on the prediction of classical biomarkers, immunotherapy related gene signatures, and subtypes.

View Article and Find Full Text PDF

Sarcopenia as a Prognostic Factor and Multimodal Interventions in Breast Cancer.

Int J Gen Med

December 2024

Department of Thyroid and Breast Surgery, Quzhou People's Hospital, Quzhou, 324000, People's Republic of China.

Objective: This study aims to demonstrate the impact of sarcopenia on the prognosis of early breast cancer and its role in early multimodal intervention.

Methods: The clinical data of patients (n=285) subjected to chemotherapy for early-stage breast cancer diagnosed pathologically between January 1, 2016, and December 31, 2020, in our hospital were retrospectively analyzed. Accordingly, the recruited subjects were divided into sarcopenia (n=85) and non-sarcopenia (n=200) groups according to CT diagnosis correlating with single-factor and multifactorial logistic regression analyses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!