The aboveground carbon sequestration rate (ACSR) of forests serves as an indicator of their carbon sequestration capacity over time, providing insights into the potential carbon sequestration capacity of forest ecosystems. To explore the long-term Spatiotemporal variation of ACSR in the transitional ecotone of the eastern Tibetan Plateau under climate change scenarios, we utilized a forest landscape model that was parameterized with forest inventory data from the eastern Tibetan Plateau to simulate this ecological function changes. The study found that climate warming had significant effect on forests ACSR in different types of forests. ACSR was significantly reduced (p<0.05) in cold temperate coniferous and temperate coniferous forests, whereas it was significantly increased in deciduous broad-leaved forests. However, the impact of climate warming on evergreen broad-leaved forests was found to be negligible. At the species level, climate warming has mostly suppressed the ACSR of coniferous trees, except for Chinese hemlock. The main dominant species, spruce and fir, have been particularly affected. Conversely, the ACSR of most broad-leaved trees has increased due to climate warming. In addition, at the landscape scale, the ACSR within this region is expected to experience a steady decline after 2031s-2036s. Despite the effects of climate warming, this trend is projected to persist. In conclusion, the forests ACSR in this region will be significantly affected by future climate warming. Our research indicates that climate warming will have a noticeable suppressive effect on conifers. It is imperative that this factor be taken into account when devising forest management plans for the future in this region.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10359146PMC
http://dx.doi.org/10.3389/fpls.2023.1212406DOI Listing

Publication Analysis

Top Keywords

carbon sequestration
16
tibetan plateau
12
aboveground carbon
8
sequestration rate
8
eastern tibetan
8
climate change
8
sequestration capacity
8
forests acsr
8
projecting future
4
future aboveground
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!