Plants possess compounds serving as reducing agents for green synthesis of gold nanoparticles (AuNPs), which is currently considered for biomedical application. Exposure to cadmium (Cd) can affect the functional integrity of the several organs such as kidney and liver. (NL) is known for its several medicinal properties, including its protective role against tissue damages. This study investigated the bioactive compounds in NL using gas chromatography-mass spectroscopy (GC-MS) and ameliorative potential of its biosynthesized AuNPs (NL-AuNPs) against Cd-induced nephrotoxicity in rats. The presence of bioactive compounds in was investigated by GC-MS in aqueous extract of NL. Gold nanoparticles were synthesized using aqueous extract of NL. Thirty rats were grouped into six (n = 5). Group 1 served as control, while group 2, 3, 4 and 5 received CdCl (10 mg/kg) orally for five days. Thereafter, groups 3, 4, and 5, respectively, received silymarin (75 mg/kg), 5 and 10 mg/kg NL-AuNPs, orally for 14 days, while group 6 received 10 mg/kg NL-AuNPs only. Rats were sacrificed after treatment, and biochemical parameters and kidney histopathology were evaluated. Bioactive compounds of pharmacological importance identified include pyrogallol, oxacyclohexadecan-2-one, 22-Desoxycarpesterol, 7,22-Ergostadienol, β-sitosterol and Dihydro-β-agarofuran. Cadmium caused nephrotoxicity in rats, as evidenced by significant (p < 0.05) increase in the levels of kidney function markers (serum urea and creatinine) and inflammatory markers (Interleukin-6 (IL-6) and Nuclear Factor-κB (NF-κB)) when compared with control. These changes were significantly (p < 0.05) ameliorated by the spherically-synthesized NL-AuNPs (25-30 nm) with the 5 mg/kg NL-AuNPs more potent against kidney damage induced by Cd in rats but high doses of NL-AuNPs (≥10 mg/kg) could be suggested toxic. NL possess phytochemicals capable of reducing gold salts to nanoparticle form, and doses up to 5 mg/kg could be considered safe for the treatment of renal damage occasioned by cadmium.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10361308PMC
http://dx.doi.org/10.1016/j.heliyon.2023.e17124DOI Listing

Publication Analysis

Top Keywords

aqueous extract
12
gold nanoparticles
12
bioactive compounds
12
ameliorative potential
8
potential biosynthesized
8
nephrotoxicity rats
8
group received
8
orally days
8
10 mg/kg nl-aunps
8
rats
5

Similar Publications

Cassava Waste Starch as a Source of Bioplastics: Development of a Polymeric Film with Antimicrobial Properties.

Foods

January 2025

Programa de Pós-Graduação em Ciência de Alimentos (PPGCA), Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, Belo Horizonte 31270-901, MG, Brazil.

Polysaccharides represent the most abundant biopolymers in agri-food wastes and thus are the most studied polymers to produce biodegradable films for use in packaging. Starch is among the major polysaccharides extracted from food and agricultural waste that have been used as precursor material for film production. Therefore, the present study aimed at producing an active film with antimicrobial properties using starch extracted from cassava waste and oil extracted from cloves.

View Article and Find Full Text PDF

During coffee production, the removal and disposal of the coffee bean-surrounding layers pose an environmental problem. In this work, we examined the effects of several aqueous coffee cherry extracts on the growth and metabolism, biofilm formation, antioxidant capacity and antimicrobial activity of six lactobacilli from the INIA collection and a commercial probiotic GG strain. Growth medium supplementation with different coffee cherry extracts (at 40%) stimulated strain growth and metabolism.

View Article and Find Full Text PDF

Rich in bioactive compounds, carbohydrates, fibers, minerals, and trace elements, apple pomace (AP) is a significant agro-industrial by-product, which pollutes and brings high management costs. The current study investigates the possibility of using an aqueous AP extract (APE) as the main ingredient in a jelly candy recipe, replacing artificial colors and flavors and improving its nutritional value. APE and formulated jelly candies were analyzed in terms of their phytochemical profile, antioxidant capacity, and color parameters.

View Article and Find Full Text PDF

Natural Eutectic Solvent-Based Temperature-Controlled Liquid-Liquid Microextraction and Nano-Liquid Chromatography for the Analysis of Herbal Aqueous Samples.

Foods

December 2024

Departamento de Química, Área de Química Analítica, Facultad de Ciencias, Universidad de La Laguna (ULL), Avenida Astrofísico Francisco Sánchez s/n, 38206 San Cristóbal de La Laguna, Tenerife, Spain.

In this work, two novel (-)-menthol-based hydrophobic natural eutectic solvents with vanillin and cinnamic acid were prepared and applied as extraction solvents. In this regard, 12 endocrine disruptors, including phenol, 2,4-dimethylphenol, 2,3,6-trimethylphenol, 4--butylphenol, 4--butylphenol, 4--amylphenol, 4--hexylphenol, 4--octylphenol, 4--heptylphenol, 4--octylphenol, and 4--nonylphenol and bisphenol A, were studied in a green tea drink. A temperature-controlled liquid-liquid microextraction was used as the extraction method, and nano-liquid chromatography-ultraviolet detection was used as the separation and determination system.

View Article and Find Full Text PDF

The present study aimed to investigate the ability of an aqueous extract derived from mustard seed meal to counteract the effects of endotoxin lipopolysaccharide (LPS) on the intestinal epithelium. Caco-2 cells were cultured together with HT29-MTX and used as a cellular model to analyze critical intestinal parameters, such as renewal, integrity, innate immunity, and signaling pathway. Byproducts of mustard seed oil extraction are rich in soluble polysaccharides, proteins, allyl isothiocyanates, and phenolic acids, which are known as powerful antioxidants with antimicrobial and antifungal properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!