The aim of this study is to explore the active components and potential molecular mechanism of action of L. against nasopharyngeal carcinoma (NPC). We used network pharmacology, molecular docking, and bioinformatics analysis to identify the active components and their role against NPC. The experimental verification was detected by MTT, AnnexinV-FITC/PI double fluorescence staining and Western blotting method. Network pharmacology identified that mollugin is one of the most effective components in L. Important NPC targets included HSP90AA1, CDK1, EGFR, PIK3CA, MAPK14, and CDK2. Molecular docking revealed considerable binding activity of mollugin with either of the 6 important NPC targets. Bioinformatics analysis showed that these 6 important targets were mutated in NPC, and the expression of HSP90AA1, PIK3CA, and CDK2 in cancer tissues was significantly different from that in normal tissues. MTT detection and AnnexinV-FITC/PI double fluorescence staining showed that mollugin inhibited the proliferation and induced apoptosis of NPC cells. Western blotting indicated that the molecular mechanism of mollugin against NPC was related to the regulation of the expression of Survivin and XIAP. This study predicted and partially verified the pharmacological and molecular mechanism of action of L. against NPC. Mollugin was identified as a potential active ingredient against NPC. These results prove the reliability of network pharmacology approaches and provide a basis for further research and application of L. against NPC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10361237 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2023.e17078 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!