Optimization of process variables to prepare activated carbon from Noug (Guizotia abyssinica cass.) stalk using response surface methodology.

Heliyon

Department of Environmental and Occupational Health and Safety, College of Medicine and Health Sciences, University of Gondar, P.O Box 196, Gondar, Ethiopia.

Published: June 2023

Even though adsorption is considered the simple, effective, and efficient method for the treatment of wastewater, accessibility of low-cost and locally available activated carbon remains the challenge. In response to this, recently significant amounts of agricultural byproducts have been investigated to prepare low-cost porous carbon, but there is still a problem related to cost and availability. So, Noug stalk, chosen because of its abundance and low cost as an agricultural byproduct in Ethiopia, was chemically activated with phosphoric acid to produce a low-cost porous carbon. The production of Noug stalk activated carbon (NSAC) is optimized using response surface methodology. A central composite design was used to investigate the effect of three process parameters, namely carbonization temperature (450-650 °C), activation time (90-150 min), and impregnation ratio (w/w) (1-3), on the BET surface area and yield of porous carbon. The analysis of variance (ANOVA) result shows that all three process parameters showed a significant effect on the surface area of porous carbon, while only carbonization temperature showed a significant effect on the yield of porous carbon. The best conditions for NSAC preparation were a carbonization temperature of 537.50 °C, an activation time of 127 min, and an impregnation ratio of 1.95, resulting in a BET surface area and yield of 473.45 m g and 53.78%, respectively. The expected and observed values of the model for the outcome variable were highly comparable. Several analytical techniques, including proximal analysis, Fourier transform infrared spectroscopy, and N adsorption-desorption, were used to characterize the NSAC. The results demonstrated that the prepared NSAC has a highly porous structure comparable to porous carbon obtained from other biomass feedstocks. This implies it would be used as a potential low-cost alternative for wastewater treatment using the adsorption process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10361380PMC
http://dx.doi.org/10.1016/j.heliyon.2023.e17254DOI Listing

Publication Analysis

Top Keywords

porous carbon
24
activated carbon
12
carbonization temperature
12
surface area
12
carbon
9
response surface
8
surface methodology
8
low-cost porous
8
noug stalk
8
three process
8

Similar Publications

Due to the industry's rapid growth, the presence of organic pollutants, especially antibiotics, in water and wastewater resources is the main concern for wildlife and human health. Therefore, these days, a significant challenge is developing an efficient, sustainable, and eco-friendly photocatalyst. Natural biological models have numerous advantages compared to artificial model materials.

View Article and Find Full Text PDF

High-Performance Thermoelectric Composite of BiTe Nanosheets and Carbon Aerogel for Harvesting of Environmental Electromagnetic Energy.

ACS Nano

January 2025

State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China.

Intensifying the severity of electromagnetic (EM) pollution in the environment represents a significant threat to human health and results in considerable energy wastage. Here, we provide a strategy for electricity generation from heat generated by electromagnetic wave radiation captured from the surrounding environment that can reduce the level of electromagnetic pollution while alleviating the energy crisis. We prepared a porous, elastomeric, and lightweight BiTe/carbon aerogel (CN@BiTe) by a simple strategy of induced in situ growth of BiTe nanosheets with three-dimensional (3D) carbon structure, realizing the coupling of electromagnetic wave absorption (EMA) and thermoelectric (TE) properties.

View Article and Find Full Text PDF

Gradient porous carbon has become a potential electrode material for energy storage devices, including the aqueous zinc-ion hybrid capacitor (ZIHC). Compared with the sufficient studies on the fabrication of ZIHCs with high electrochemical performance, there is still lack of in-depth understanding of the underlying mechanisms of gradient porous structure for energy storage, especially the synergistic effect of ultramicropores (<1 nm) and micropores (1-2 nm). Here, we report a design principle for the gradient porous carbon structure used for ZIHC based on the data-mining machine learning (ML) method.

View Article and Find Full Text PDF

Prussian blue analogs (PBAs), as a classical kind of microporous materials, have attracted substantial interests considering their well-defined framework structures, unique physicochemical properties and low cost. However, PBAs typically adopt cubic structure that features small pore size and low specific surface area, which greatly limits their practical applications in various fields ranging from gas adsorption/separation to energy conversion/storage and biomedical treatments. Here we report the facile and general synthesis of unconventional hexagonal open PBA structures.

View Article and Find Full Text PDF

Bioactive microspheres to enhance sonodynamic-embolization-metalloimmune therapy for orthotopic liver cancer.

Biomaterials

December 2024

Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China. Electronic address:

The development of novel microspheres for the combination of sonodynamic therapy (SDT) with transarterial embolization (TAE) therapy to amplify their efficacy has received increasing attention. Herein, a novel strategy for encapsulating sonosensitizers (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!