The objective of the systematic review is to find an answer to a question: "Do surface treatments on titanium implants produced by additive manufacturing improve osseointegration, compared to untreated surfaces?". This review followed the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA 2020) and was registered in the International Prospective Register of Systematic Reviews (PROSPERO) (CRD42022321351). Searches were performed in PubMed, Scopus, Science Direct, Embase, and Google Scholar databases on March 22nd, 2022. Articles were chosen in 2 steps by 2 blinded reviewers based on previously selected inclusion criteria: articles in animals that addressed the influence of surface treatments on osseointegration in implants produced by additive manufacturing. Articles were excluded that (1) did not use titanium surface, 2) that did not evaluate surface treatments, 3) that did not described osseointegration, 4) Studies with only in vitro analyses, clinical studies, systematic reviews, book chapters, short communications, conference abstracts, case reports and personal opinions.). 1003 articles were found and, after applying the eligibility criteria, 17 were used for the construction of this review. All included studies found positive osseointegration results from performing surface treatments on titanium. The risk of bias was analyzed using the SYRCLE assessment tool. Surface treatments are proposed to promote changes in the microstructure and composition of the implant surface to favor the adhesion of bone cells responsible for osseointegration. It is observed that despite the benefits generated by the additive manufacturing process in the microstructure of the implant surface, surface treatments are still indispensable, as they can promote more suitable characteristics for bone-implant integration. It can be concluded that the surface treatments evaluated in this systematic review, performed on implants produced by additive manufacturing, optimize osseointegration, as it allows the creation of a micro-nano-textured structure that makes the surface more hydrophilic and allows better contact bone-implant.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10361303PMC
http://dx.doi.org/10.1016/j.heliyon.2023.e17105DOI Listing

Publication Analysis

Top Keywords

surface treatments
28
systematic review
16
additive manufacturing
16
surface
12
implants produced
12
produced additive
12
titanium implants
8
treatments titanium
8
systematic reviews
8
implant surface
8

Similar Publications

Rheumatoid arthritis is an autoimmune disorder affecting multiple joints and requires lifelong treatment. Present study was designed to formulate Esculin-loaded chitosan nanoparticles (ENPs) and evaluation of its anti-inflammatory and anti-arthritic action. The acute toxicity study of ENPs was also performed.

View Article and Find Full Text PDF

Cellulite is an aesthetically distressing skin condition occurring in 80-90% of females and manifesting as dimples and depressions, producing an uneven surface to the skin. Our aim was to evaluate the effect of combined oral consumption of two dietary supplements based on chokeberry and tart cherry juices over a period of 32 days on cellulite reduction. Twenty women aged 21-49 with a cellulite grade of 1-2 according to the Nurnberger-Muller scale were participating in the study.

View Article and Find Full Text PDF

Application of zeolites for efficient tannery wastewater remediation.

Environ Sci Pollut Res Int

December 2024

Stazione Sperimentale Per L'industria Delle Pelli E Delle Materie Concianti S.R.L., 80143, Napoli, Italy.

Leather manufacturing is the process of converting raw animal hides or skins into finished leather. The complex industrial procedures result in a tanning effluent composed of chemical compounds with potentially hazardous impacts on humans and ecosystems. Among the traditional and efficient wastewater treatments, adsorption is an effective and well-known approach, able to manage a wide range of contaminants from wastewater.

View Article and Find Full Text PDF

Enhanced Electrochemical Detection of Valganciclovir Using a Hierarchically Structured Lisianthus Flower-Inspired Bimetallic Ni-Ce Organic Framework.

Langmuir

December 2024

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China.

This study reports the development of an innovative electrochemical sensor based on organometallic framework nanostructures for detecting valganciclovir (VLCV). VLCV is employed in the treatment of cytomegalovirus retinitis in AIDS patients. Rational design of nanoarchitectures for electroactive materials is a crucial approach for boosting their electrocatalytic performance.

View Article and Find Full Text PDF

Aba-induced active stomatal closure in bulb scales of Lanzhou lily.

Plant Signal Behav

December 2025

State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu, China.

Abscisic acid (ABA) mediated stomatal closure is a highly effective mode of active stomatal regulation under drought stress. Previous studies on stomatal regulation have primarily focused on the leaves of vascular plants, while research on the stomatal behavior of bulbous plants remains unknown. In addition, ABA-induced stomatal regulation in bulbs has yet to be explored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!