Immune responses in the uterine mucosa: clues for vaccine development in pigs.

Front Immunol

Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada.

Published: July 2023

The immune system in the upper reproductive tract (URT) protects against sexually transmitted pathogens, while at the same time providing immune tolerance responses against allogenic sperm and the developing fetus. The uterine environment is also responsive to hormonal variations during the estrus cycle, although the most likely timing of exposure to pathogens is during estrus and breeding when the cervix is semi-permissive. The goal for intrauterine immunization would be to induce local or systemic immunity and/or to promote colostral/lactogenic immunity that will passively protect suckling offspring. The developing fetus is not the vaccine target. This minireview article focuses on the immune response induced in the pig uterus (uterine body and uterine horns) with some comparative references to other livestock species, mice, and humans.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10361056PMC
http://dx.doi.org/10.3389/fimmu.2023.1171212DOI Listing

Publication Analysis

Top Keywords

developing fetus
8
immune
4
immune responses
4
uterine
4
responses uterine
4
uterine mucosa
4
mucosa clues
4
clues vaccine
4
vaccine development
4
development pigs
4

Similar Publications

Utero-placental adaptations in response to intrauterine growth restriction in swine.

Domest Anim Endocrinol

January 2025

Department of Animal Science, Pennsylvania State University, University Park, PA, 16802, USA. Electronic address:

Intrauterine growth restriction (IUGR) is a common condition in swine associated with high piglet mortality and morbidity that develops in early gestation. This review article explores differences in uterine and placental tissues associated with IUGR fetuses compared to their normally-grown littermates at different stages of gestation. Specifically, we will review the available knowledge to date describing differences in 1) structure, 2) cellular apoptosis and proliferation, 3) adhesion, and 4) angiogenesis in endometrial and placental tissues associated with IUGR fetuses across gestation.

View Article and Find Full Text PDF

Background/objectives: The DNA methylation of neonatal cord blood can be used to accurately estimate gestational age. This is known as epigenetic gestational age. The greater the difference between epigenetic and chronological gestational age, the greater the association with an inappropriate perinatal fetal environment and development.

View Article and Find Full Text PDF

Neurofibromatosis is a genetic disorder arising de novo or with an autosomal dominant transmission that typically presents either at birth or in early childhood, manifesting through distinctive clinical features such as multiple café-au-lait spots, benign tumors in the skin, bone enlargement, and deformities. This literature review aims to resume the spectrum of maternal and fetal complications encountered in pregnant women with neurofibromatosis type 1 (NF1). Thorough research was conducted on databases such as Web of Science, PubMed, Science Direct, Google Scholar, and Wiley Online Library.

View Article and Find Full Text PDF

Unlabelled: Amniotic band syndrome is a constrictive phenomenon in fetal development that can provoke limb autoamputation, malformation, trunk division, and umbilical cord strangulation. The latter two complications will ultimately lead to fetal demise if left untreated. If detected early enough, select cases may benefit from prenatal resection of the amniotic bands, thus preventing amputation and fetal death.

View Article and Find Full Text PDF

The shaping of the human intestinal microbiota starts during the intrauterine period and continues through the subsequent stages of extrauterine life. The microbiota plays a significant role in the predisposition and development of immune diseases, as well as various inflammatory processes. Importantly, the proper colonization of the fetal digestive system is influenced by maternal microbiota, the method of pregnancy completion and the further formation of the microbiota.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!