Acute lymphoblastic leukemia (ALL) patients with a gain of chromosome 21, intrachromosomal amplification of chromosome 21 (iAMP21), or Down syndrome (DS), have increased expression of genes in the DS critical region (DSCR) of chromosome 21, including the high-mobility group nucleosome-binding protein 1, . Children with DS are predisposed to develop hematologic malignancies, providing insight into the role of chromosome 21 in the development of leukemias. A 320-kb deletion in the pseudoautosomal region of the X/Y chromosome in leukemic cells, resulting in a gene fusion between the purinergic receptor and cytokine receptor-like factor-2 (), is a common feature in ~60% of DS-ALL and ~40% of iAMP21 patients, suggesting a link between chromosome 21 and . In an Australian cohort of pediatric B-ALL patients with ( = 38), eight patients harbored gain of chromosome 21 (+21), and two patients had iAMP21, resulting in a significantly increased expression. An inducible CRISPR/Cas9 system was used to model and investigate its cooperation with . This model was then used to validate as an influencing factor for development. Using Cas9 to cleave the DNA at the pseudoautosomal region without directed repair, cells expressing favored repair, resulting in generation, compared with cells without . CRISPR/Cas9 cells expressing exhibit increased proliferation, thymic stromal lymphopoietin receptor (TSLPR) expression, and JAK/STAT signaling, consistent with cells from patients with . Our patient expression data and unique CRISPR/Cas9 modeling, when taken together, suggest that increases the propensity for development. This has important implications for patients with DS, +21, or iAMP21.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10358767 | PMC |
http://dx.doi.org/10.3389/fonc.2023.1177871 | DOI Listing |
Phytopathology
January 2025
University of Florida, Microbiology & Cell Science, Cancer/Genetics Research Complex 302, 2033 Mowry Road, Gainesville, Florida, United States, 32610;
(L.) Moench is the fifth most important cereal crop and expected to gain prominence due to its versatility, low input requirements, and tolerance to hot and dry conditions. In warm and humid environments the productivity of sorghum is severely limited by the hemibiotrophic fungal pathogen , the causal agent of anthracnose.
View Article and Find Full Text PDFVet Pathol
January 2025
The University of Tokyo, Tokyo, Japan.
Canine high-grade oligodendrogliomas (HGOGs) exhibit a high expression of platelet-derived growth factor receptor-α (PDGFRA). We examined mutations and gain of and their association with the PDGFRA expression and proliferation of tumor cells in canine HGOG cases and cell lines. Polymerase chain reaction and sequence analysis revealed expected pathogenic mutations in exons 7 and 8 in 16/34 (47%) cases.
View Article and Find Full Text PDFJ Assist Reprod Genet
January 2025
Medical Genetics Laboratory, Shiraz Fertility Center, Shiraz, Iran.
Purpose: Preimplantation aneuploidy in humans is one of the primary causes of implantation failure and embryo miscarriage. This study was conducted to gain insight into gene expression changes that may result from aneuploidy in blastocysts through RNA-Seq analysis.
Methods: The surplus embryos of preimplantation genetic testing for aneuploidy (PGT-A) candidate couples with normal karyotype and maternal age < 38 were collected following identical ovarian stimulation protocol.
PLoS One
January 2025
Ionis Pharmaceuticals, Inc., Carlsbad, CA, United States of America.
Lateral Meningocele Syndrome (LMS), a disorder associated with NOTCH3 pathogenic variants, presents with neurological, craniofacial and skeletal abnormalities. Mouse models of the disease exhibit osteopenia that is ameliorated by the administration of Notch3 antisense oligonucleotides (ASO) targeting either Notch3 or the Notch3 mutation. To determine the consequences of LMS pathogenic variants in human cells and whether they can be targeted by ASOs, induced pluripotent NCRM1 and NCRM5 stem (iPS) cells harboring a NOTCH36692-93insC insertion were created.
View Article and Find Full Text PDFNeuropathology
January 2025
Department of Pathology, Kyorin University Faculty of Medicine, Tokyo, Japan.
The manifestation of glioblastoma, IDH-wildtype (GB) as intracranial hemorrhage (ICH) presents diagnostic and therapeutic challenges. Molecular characteristics, including TERT promoter mutation, EGFR amplification, and chromosome 7 gain/10 loss, were incorporated to diagnose GB in the fifth edition of the World Health Organization Classification of Tumors of the Central Nervous System. When molecular analyses fail to detect low fractions of these genetic alterations, the integrated diagnosis of GB can be enigmatic.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!