Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: Cervical spondylotic radiculopathy (CSR) is a common neurologic condition that causes chronic neck pain and motor functions, with neuropathic pain (NP) being the primary symptom. Although it has been established that electroacupuncture (EA) can yield an analgesic effect in clinics and synaptic plasticity plays a critical role in the development and maintenance of NP, the underlying mechanisms have not been fully elucidated. In this study, we explored the potential mechanisms underlying EA's effect on synaptic plasticity in CSR rat models.
Materials And Methods: The CSR rat model was established by spinal cord compression (SCC). Electroacupuncture stimulation was applied to LI4 () and LR3 () acupoints for 20 min once a day for 7 days. Pressure pain threshold (PPT) and mechanical pain threshold (MPT) were utilized to detect the pain response of rats. A gait score was used to evaluate the motor function of rats. Enzyme-linked immunosorbent assay (ELISA), Western blot (WB), immunohistochemistry (IHC), immunofluorescence (IF), and transmission electron microscopy (TEM) were performed to investigate the effects of EA.
Results: Our results showed that EA alleviated SCC-induced spontaneous pain and gait disturbance. ELISA showed that EA could decrease the concentration of pain mediators in the cervical nerve root. WB, IHC, and IF results showed that EA could downregulate the expression of synaptic proteins in spinal cord tissues and promote synaptic plasticity. TEM revealed that the EA could reverse the synaptic ultrastructural changes induced by CSR.
Conclusion: Our findings reveal that EA can inhibit SCC-induced NP by modulating the synaptic plasticity in the spinal cord and provide the foothold for the clinical treatment of CSR with EA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10362917 | PMC |
http://dx.doi.org/10.2147/JPR.S415111 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!