Disposal of respiratory secretions from patients having contagious diseases (e.g., COVID-19 and tuberculosis) poses a high risk of infection for healthcare workers. AcryloSorb canister liner bags are highly efficient for the safe handling of contagious respiratory secretions via solidification and disinfection processes. The canister liner bags are lined with disinfectant-impregnated superabsorbent polymer (DSAP) granules. The liner structure in the bag has a patented design that has upward progressive absorbent availability (Indian Patent application # 202041019872). AcryloSorb canister liner bags can decontaminate the fluid secretions absorbed in the bag and solidify within 10 min. The present study focused on the bactericidal effect of DSAP using Gram-negative bacteria, and Gram-positive bacteria, (). Disinfectants such as peracetic acid (ethaneperoxic acid), sodium dichloroisocyanurate (sodium 3,5-dichloro-2,4,6-trioxo-1,3,5-triazinan-1-ide), rose bengal (disodium; 2,3,4,5-tetrachloro-6-(2,4,5,7-tetraiodo-3-oxido-6-oxoxanthen-9-yl) benzoate), and ,-dimethyl--[3-(triethoxysilyl)propyl]octadecan-1-aminium chloride at different weight ratios were impregnated in superabsorbent polymer (SAP) granules. The bactericidal activities of DSAP were studied along with its solidification capacity. Disinfectants showed different bactericidal activities when impregnated with SAP granules. For example, peracetic acid-impregnated SAP granules (DSAP-P) showed 100% bactericidal activity for both and at 0.5 wt % peracetic acid. Sodium dichloroisocyanurate-impregnated SAP granules showed 100% bactericidal activity only at 5 wt % sodium dichloroisocyanurate (DSAP-S5). Even though peracetic acid was highly effective, SAP granules collapsed when impregnated with peracetic acid. The ease of handling, disinfection efficacy, and preserving the morphology of SAP granules make DSAP-S5, a suitable candidate for AcryloSorb canister liner bags.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10357423PMC
http://dx.doi.org/10.1021/acsomega.3c01994DOI Listing

Publication Analysis

Top Keywords

sap granules
24
canister liner
16
liner bags
16
peracetic acid
16
bactericidal activity
12
superabsorbent polymer
12
acrylosorb canister
12
granules
8
respiratory secretions
8
acid sodium
8

Similar Publications

The efficacy and active compounds of Chaihuang Qingyi Huoxue granule to Ameliorate intestinal mucosal barrier injury in rats with severe acute pancreatitis by suppressing the HMGB1/TLR4/NF-κB signaling pathway.

Int Immunopharmacol

January 2025

Research Center of Integrated Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University Luzhou, 646000, China; School of Integrated Traditional Chinese and Western Clinical Medicine, North Sichuan Medical College, Nanchong, 637000, China; College of Integrated Chinese and Western Medicine and the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China; The Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Digestive System Diseases of Luzhou city, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Lu zhou, 646000, China. Electronic address:

Intestinal mucosal barrier injury represents a critical complication of severe acute pancreatitis (SAP) without effective treatment. This study investigated the efficacy, underlying mechanism, and responsible active compounds of the traditional Chinese medicinal prescription Chaihuang Qingyi Huoxue granule (CHQY) in treating SAP-induced intestinal mucosal barrier injury. SAP was established in Sprague-Dawley rats via intra-pancreaticobiliary duct infusion of sodium taurocholate, followed by oral CHQY administration (3.

View Article and Find Full Text PDF

Eurydema spectabilis (Heteroptera: Pentatomidae) has a piercing-sucking mouth type and feeds on plant sap. In this study, the morphological structure of the salivary glands, alimentary canal, and Malpighian tubules of E. spectabilis was examined using light and scanning electron microscopy.

View Article and Find Full Text PDF

Introduction: Pain and disability management are crucial for a speedy recovery. Combining analgesics with different mechanisms of action provides greater pain relief with lower doses, promoting efficient multimodal analgesia. This study evaluated the efficacy and safety between two fixed-dose combinations (FDC): etoricoxib/tramadol compared to paracetamol/tramadol for the management of acute low back pain (LBP) in a 7-day treatment.

View Article and Find Full Text PDF

Superabsorbent polymer (SAP) granules, typically used in personal care devices such as diapers, incontinence devices, hygiene pads, and wound dressings, and granular particles of zeolite and bentonite were each subjected to modification by exposure to solutions of 1-chloro-2,2,5,5-tetramethyl-4-imidazolidinone (MC) in ethanol at room temperature. The air-dried granules showed newly acquired properties attributable to the presence of active chlorine (Cl). The treated particles effectively oxidized the malodorant 3-mercapto-3-methylbutanol (3M3MB).

View Article and Find Full Text PDF

N-terminal truncation of PhaC and its effect on PHA production.

Microb Cell Fact

February 2024

Ecobiomaterial Research Laboratory, School of Biological Sciences, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Penang, Malaysia.

Background: Among the polyhydroxyalkanoate (PHA), poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate] [P(3HB-co-3HHx)] is reported to closely resemble polypropylene and low-density polyethylene. Studies have shown that PHA synthase (PhaC) from mangrove soil (PhaC) is an efficient PhaC for P(3HB-co-3HHx) production and N-termini of PhaCs influence its substrate specificity, dimerization, granule morphology, and molecular weights of PHA produced. This study aims to further improve PhaC through N-terminal truncation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!