The early Cambrian Qiongzhusi Formation shale is rich in organic matter and is a high-quality marine Source rock. However, the origin of Qiongzhusi Formation siliceous rocks is unknown, and the role of siliceous rocks in the process of organic matter enrichment or preservation is also lacking. This study combines thin section, scanning electron microscopy, SEM/EDS, major and trace element analysis, and N adsorption experiments to analyze and evaluate the shale of the Qiongzhusi Formation in the central region of the Sichuan Basin. The quartz types in the shale of the Qiongzhusi Formation are divided into four types, namely, bioclastic siliceous rocks, terrestrial detrital quartz, siliceous microcrystalline quartz particles, and microcrystalline quartz aggregates; at the same time, according to petrographic and geochemical parameters, the content of authigenic quartz in Qiongzhusi Formation shale decreases from top to bottom, and terrigenous detrital quartz tends to increase, and biogenic silicon accounts for the majority of authigenic quartz components; autogenous quartz has a positive impact on the pore structure of shale, providing sufficient pore space for the development of organic pores and protecting the internal pore network by forming intergranular pores as rigid frameworks. At the same time, it plays a crucial role in the enrichment and preservation of organic matter.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10357452 | PMC |
http://dx.doi.org/10.1021/acsomega.3c02780 | DOI Listing |
ACS Omega
December 2023
School of Geoscience and Technology, Southwest Petroleum University, Chengdu 610500, China.
The fourth member of the Sinian Dengying Formation in northern Sichuan was reformed by multistage diagenetic fluids. It is beneficial to systematically analyze the diagenetic evolution of the area to clarify the sedimentary evolution of the dolomite in the fourth member of the Dengying Formation and the fluid characteristics at different diagenetic stages. In this study, the petrological characteristics, vertical sedimentary evolution, diagenetic fluid stages, and diagenetic environment of Dengsi dolomite were analyzed by using carbon-oxygen strontium isotopes, rare-earth elements, major and trace elements, combined with the supporting thin section identification and cathodoluminescence techniques, and the source and properties of diagenetic fluid of Dengsi dolomite in different diagenetic environments were determined.
View Article and Find Full Text PDFACS Omega
July 2023
Exploration Department, PetroChina Southwest Oil & Gasfield Company, Chengdu 610041, China.
The early Cambrian Qiongzhusi Formation shale is rich in organic matter and is a high-quality marine Source rock. However, the origin of Qiongzhusi Formation siliceous rocks is unknown, and the role of siliceous rocks in the process of organic matter enrichment or preservation is also lacking. This study combines thin section, scanning electron microscopy, SEM/EDS, major and trace element analysis, and N adsorption experiments to analyze and evaluate the shale of the Qiongzhusi Formation in the central region of the Sichuan Basin.
View Article and Find Full Text PDFChina has made a breakthrough in shale gas production in the deepwater shelf shales of the Lower Cambrian Qiongzhusi Formation and the Upper Ordovician-Early Silurian Wufeng-Longmaxi Formation. In recent years, active shale oil and gas shows have also been found in the shale system of the Lower Carboniferous Dawuba Formation in the Yaziluo rift trough, south of Guizhou province in Southern China, which was formed in the tensional geotectonic setting of the Palaeo-Tethys Ocean from the Devonian through the Carboniferous to the Permian. This tectonic background makes the sedimentary environments and organic matter accumulation mechanisms of Dawuba shales vastly different from deepwater shales.
View Article and Find Full Text PDFACS Omega
May 2022
State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology, Chengdu, Sichuan 610059, China.
The characteristics, distribution, and preservation of pores are vital in controlling the storage and distribution of shale gas. The Qiongzhusi Formation shales taken from different members with similar tectonic and thermal evolutions were used to evaluate the response of pore characteristics to minerals and sealing systems using field-emission scanning electron microscopy and gas adsorption. Because of differences in mineral structure and arrangement, feldspar, organic matter (OM)-clay, OM-rutile, and OM-apatite aggregates facilitate multiple types of pores in the shale and influence the relative proportions of surface porosity for different types of pores owing to differences in mineral structure and arrangement.
View Article and Find Full Text PDFR Soc Open Sci
December 2021
State Key Laboratory of Coal Mine Disaster Dynamics and Control, School of Resources and Safety Engineering, Chongqing University, Chongqing, People's Republic of China.
A sound understanding of the water permeability evolution in fractured shale is essential to the optimal hydraulic fracturing (reservoir stimulation) strategies. We have measured the water permeability of six fractured shale samples from Qiongzhusi Formation in southwest China at various pressure and stress conditions. Results showed that the average uniaxial compressive strength (UCS) and average tensile strength of the Qiongzhusi shale samples were 106.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!