Glucocorticoids (GCs) are widely used for the treatment of inflammatory skin diseases despite significant adverse effects including skin atrophy. Effects of GCs are mediated by the glucocorticoid receptor (GR), a well-known transcription factor. Previously, we discovered that one of the GR target genes, REDD1, is causatively involved in skin atrophy. Here, we investigated its role in GR function using HaCaT REDD1 knockout (KO) keratinocytes. We found large differences in transcriptome of REDD1 KO and control Cas9 cells in response to glucocorticoid fluocinolone acetonide (FA): both the scope and amplitude of response were significantly decreased in REDD1 KO. The status of REDD1 did not affect GR stability/degradation during self-desensitization, and major steps in GR activation-its nuclear import and phosphorylation at activating Ser211. However, the amount of GR phosphorylated at Ser226 that may play negative role in GR signalling, was increased in the nuclei of REDD1 KO cells. GR nuclear import and transcriptional activity also depend on the composition of GR chaperone complex: exchange of chaperone FKBP51 (FK506-binding protein 5) for FKBP52 (FK506-binding protein 4) being a necessary step in GR activation. We found the increased expression and abnormal nuclear translocation of FKBP51 in both untreated and FA-treated REDD1 KO cells. Overall, our results suggest the existence of a feed-forward loop in GR signalling mediated by its target gene REDD1, which has translational potential for the development of safer GR-targeted therapies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/exd.14887 | DOI Listing |
Cell Metab
December 2024
State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China. Electronic address:
The essential amino acid methionine plays a pivotal role in one-carbon metabolism, facilitating the production of S-adenosylmethionine (SAM), a critical supplier for DNA methylation and thereby a modulator of gene expression. Here, we report that the methionine cycle is disrupted in skeletal muscle during cancer cachexia, leading to endoplasmic reticulum stress and DNA hypomethylation-induced expression of the DNA damage inducible transcript 4 (Ddit4) gene, encoding the regulated in development and DNA damage response 1 (REDD1) protein. Targeting DNA methylation by depletion or pharmacological inhibition of DNA methyltransferase 3A (DNMT3A) exacerbates cachexia, while restoring DNMT3A expression or REDD1 knockout alleviates cancer cachexia-induced skeletal muscle atrophy in mice.
View Article and Find Full Text PDFCell Signal
December 2024
Division of Cell Signalling & Immunology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK. Electronic address:
Biol Direct
November 2024
Department of Thyroid and Hernia Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510080, China.
Geroscience
October 2024
Department of Cellular and Molecular Physiology, Penn State College of Medicine, 500 University Drive, Hershey, PA, 17033, USA.
Am J Physiol Cell Physiol
November 2024
Cachexia Research Laboratory, Department of Health, Human Performance and Recreation, Exercise Science Research Center, University of Arkansas, Fayetteville, Arkansas, United States.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!