Carbon dioxide (CO) is the most abundant component of greenhouse gases (GHGs) and directly creates environmental issues such as global warming and climate change. Carbon capture and storage have been proposed mainly to solve the problem of increasing CO concentration in the atmosphere; however, more emphasis has recently been placed on its use. Among the many methods of using CO, one of the key environmentally friendly technologies involves biologically converting CO into other organic substances such as biofuels, chemicals, and biomass via various metabolic pathways. Although an efficient biocatalyst for industrial applications has not yet been developed, biological CO conversion is the needed direction. To this end, this review briefly summarizes seven known natural CO fixation pathways according to carbon number and describes recent studies in which natural CO assimilation systems have been applied to heterogeneous in vivo and in vitro systems. In addition, studies on the production of methanol through the reduction of CO are introduced. The importance of redox cofactors, which are often overlooked in the CO assimilation reaction by enzymes, is presented; methods for their recycling are proposed. Although more research is needed, biological CO conversion will play an important role in reducing GHG emissions and producing useful substances in terms of resource cycling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10699278 | PMC |
http://dx.doi.org/10.4014/jmb.2306.06005 | DOI Listing |
Plants (Basel)
January 2025
State Key Laboratory of Rice Biology and Breeding, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311400, China.
Rice ( L.) is a staple crop for nearly half of the global population and one of China's most extensively cultivated cereals. Heading date, a critical agronomic trait, determines the regional and seasonal adaptability of rice varieties.
View Article and Find Full Text PDFNutrients
January 2025
Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Stelzhamerstraße 23, 4600 Wels, Austria.
Individuals with special metabolic demands are at risk of deficiencies in fat-soluble vitamins, which can be counteracted via supplementation. Here, we tested the ability of micellization alone or in combination with selected natural plant extracts to increase the intestinal absorption and bioefficacy of fat-soluble vitamins. Micellated and nonmicellated vitamins D3 (cholecalciferol), D2 (ergocalciferol), E (alpha tocopheryl acetate), and K2 (menaquionone-7) were tested in intestinal Caco-2 or buccal TR146 cells in combination with curcuma (), black pepper (), or ginger () plant extracts.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea.
Crude glycerol (CG), a major biodiesel production by-product, is the focus of ongoing research to convert it into polyhydroxyalkanoate (PHA). However, few bacterial strains are capable of efficiently achieving this conversion. Here, 10 PHA-producing strains were isolated from various media.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Electrical and Biological Physics, Kwangwoon University, Wolgye-Dong, Seoul 01897, Republic of Korea.
Hybrid organohalide perovskites have received considerable attention due to their exceptional photovoltaic (PV) conversion efficiencies in optoelectronic devices. In this study, we report the development of a highly sensitive, self-powered perovskite-based photovoltaic photodiode (PVPD) fabricated by incorporating a poly(amic acid)-polyimide (PAA-PI) copolymer as an interfacial layer between a methylammonium lead iodide (CHNHPbI, MAPbI) perovskite light-absorbing layer and a poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate) (PEDOT: PSS) hole injection layer. The PAA-PI interfacial layer effectively suppresses carrier recombination at the interfaces, resulting in a high power conversion efficiency () of 11.
View Article and Find Full Text PDFMolecules
January 2025
College of Chemistry and Chemical Engineering, Central South University, Changsha 410017, China.
Ratiometric lanthanide coordination polymers (Ln-CPs) are advanced materials that combine the unique optical properties of lanthanide ions (e.g., Eu, Tb, Ce) with the structural flexibility and tunability of coordination polymers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!