The evolutionary impact and influence of oestrogens on adipose tissue structure and function.

Philos Trans R Soc Lond B Biol Sci

Vice President for Research, Texas Tech Health Sciences Center, El Paso, TX 75390, USA.

Published: September 2023

AI Article Synopsis

  • Oestrogens are important sex hormones that play significant roles in human health and reproduction, particularly in how they influence adipose (fat) tissue distribution and function.
  • The distribution of body fat differs between males and females, which has implications for the development of metabolic syndrome and other chronic health issues linked to oestrogen levels.
  • This review explores the molecular mechanisms and pathways through which oestrogens affect adipose tissue, contributing to our understanding of obesity and related health concerns.

Article Abstract

Oestrogens are sex steroid hormones that have gained prominence over the years owing to their crucial roles in human health and reproduction functions which have been preserved throughout evolution. One of oestrogens actions, and the focus of this review, is their ability to determine adipose tissue distribution, function and adipose tissue 'health'. Body fat distribution is sexually dimorphic, affecting males and females differently. These differences are also apparent in the development of the metabolic syndrome and other chronic conditions where oestrogens are critical. In this review, we summarize the different molecular mechanisms, pathways and resulting pathophysiology which are a result of oestrogens actions in and on adipose tissues. This article is part of a discussion meeting issue 'Causes of obesity: theories, conjectures and evidence (Part I)'.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10363706PMC
http://dx.doi.org/10.1098/rstb.2022.0207DOI Listing

Publication Analysis

Top Keywords

adipose tissue
12
oestrogens actions
8
oestrogens
5
evolutionary impact
4
impact influence
4
influence oestrogens
4
adipose
4
oestrogens adipose
4
tissue structure
4
structure function
4

Similar Publications

Identification of a distal enhancer of Ucp1 essential for thermogenesis and mitochondrial function in brown fat.

Commun Biol

January 2025

State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China.

Uncoupling protein 1 (UCP1) is a crucial protein located in the mitochondrial inner membrane that mediates nonshivering thermogenesis. However, the molecular mechanisms by which enhancer-promoter chromatin interactions control Ucp1 transcriptional regulation in brown adipose tissue (BAT) are unclear. Here, we employed circularized chromosome conformation capture coupled with next-generation sequencing (4C-seq) to generate high-resolution chromatin interaction profiles of Ucp1 in interscapular brown adipose tissue (iBAT) and epididymal white adipose tissue (eWAT) and revealed marked changes in Ucp1 chromatin interaction between iBAT and eWAT.

View Article and Find Full Text PDF

Divergent roles of mA in orchestrating brown and white adipocyte transcriptomes and systemic metabolism.

Nat Commun

January 2025

Section of Islet Cell and Regenerative Biology, Joslin Diabetes Center; Department of Medicine, BIDMC; Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA.

N-methyladenosine (mA) is among the most abundant mRNA modifications, yet its cell-type-specific regulatory roles remain unclear. Here we show that mA methyltransferase-like 14 (METTL14) differentially regulates transcriptome in brown versus white adipose tissue (BAT and WAT), leading to divergent metabolic outcomes. In humans and mice with insulin resistance, METTL14 expression differs significantly from BAT and WAT in the context of its correlation with insulin sensitivity.

View Article and Find Full Text PDF

Corticosteroid binding globulin (CBG; SERPINA6) binds >85% of circulating glucocorticoids but its influence on their metabolic actions is unproven. Targeted proteolytic cleavage of CBG by neutrophil elastase (NE; ELANE) significantly reduces CBG binding affinity, potentially increasing 'free' glucocorticoid levels at sites of inflammation. NE is inhibited by alpha-1-antitrypsin (AAT; SERPINA1).

View Article and Find Full Text PDF

Although body mass index (BMI) is widely used as a simple tool to assess obesity, it has certain limitations and inaccuracies. It is known that visceral adipose tissue is closely related to cardiometabolic risks and all-cause mortality; however, precise measurement methods for visceral fat (magnetic resonance imaging and computed tomography) cannot be widely used. Thus, simple but accurate alternatives are valuable.

View Article and Find Full Text PDF

Association of body composition with neuroimaging biomarkers and cognitive function; a population-based study of 70-year-olds.

EBioMedicine

January 2025

Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Centre for Ageing and Health (AGECAP) at the University of Gothenburg, Sweden; Department of Psychiatry, Cognition and Old Age Psychiatry, Sahlgrenska University Hospital, Region Västra Götaland, Mölndal, Sweden.

Background: A better understanding of body-brain links may provide insights on targets for preventing cognitive decline. The aim was to explore associations of body composition with neuroimaging biomarkers and cognitive function among dementia-free 70-year-olds.

Methods: Dual-energy X-ray absorptiometry body composition measures in relation to neuroimaging measures of cortical thickness, hippocampal volume, small vessel disease, predicted brain age, and cognitive performance were explored in a cross-sectional study of 674 dementia-free 70-year-olds from the Swedish Gothenburg H70 Birth Cohort study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!