Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10548081 | PMC |
http://dx.doi.org/10.14802/jmd.23085 | DOI Listing |
Recent advancements in Parkinson's disease (PD) drug development have been significantly driven by genetic research. Importantly, drugs supported by genetic evidence are more likely to be approved. While genome-wide association studies (GWAS) are a powerful tool to nominate genomic regions associated with certain traits or diseases, pinpointing the causal biologically relevant gene is often challenging.
View Article and Find Full Text PDFGenetic risk variants for common diseases are predominantly located in non-coding regulatory regions and modulate gene expression. Although bulk tissue studies have elucidated shared mechanisms of regulatory and disease-associated genetics, the cellular specificity of these mechanisms remains largely unexplored. This study presents a comprehensive single-nucleus multi-ancestry atlas of genetic regulation of gene expression in the human prefrontal cortex, comprising 5.
View Article and Find Full Text PDFJ Med Virol
December 2024
Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
SARS-CoV-2 continues to mutate, leading to breakthrough infections. The development of new vaccine strategies to combat various strains is crucial. Protein cyclization can enhance thermal stability and may improve immunogenicity.
View Article and Find Full Text PDFIUBMB Life
January 2025
Department of Biology, Pomona College, Claremont, California, USA.
All life depends on accurate and efficient protein synthesis. The aminoacyl-tRNA synthetases (aaRSs) are a family of proteins that play an essential role in protein translation, as they catalyze the esterification reaction that charges a transfer RNA (tRNA) with its cognate amino acid. However, new domains added to the aaRSs over the course of evolution in eukaryotes confer novel functions unrelated to protein translation.
View Article and Find Full Text PDFBioinformatics
December 2024
Robert Koch Institute, ZKI-PH, Berlin, 13353.
Motivation: Nanopore sequencing represents a significant advancement in genomics, enabling direct long-read DNA sequencing at the single-molecule level. Accurate simulation of nanopore sequencing signals from nucleotide sequences is crucial for method development and for complementing experimental data. Most existing approaches rely on predefined statistical models, which may not adequately capture the properties of experimental signal data.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!