A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The promise of zero-shot learning for alcohol image detection: comparison with a task-specific deep learning algorithm. | LitMetric

Exposure to alcohol content in media increases alcohol consumption and related harm. With exponential growth of media content, it is important to use algorithms to automatically detect and quantify alcohol exposure. Foundation models such as Contrastive Language-Image Pretraining (CLIP) can detect alcohol exposure through Zero-Shot Learning (ZSL) without any additional training. In this paper, we evaluated the ZSL performance of CLIP against a supervised algorithm called Alcoholic Beverage Identification Deep Learning Algorithm Version-2 (ABIDLA2), which is specifically trained to recognise alcoholic beverages in images, across three tasks. We found ZSL achieved similar performance compared to ABIDLA2 in two out of three tasks. However, ABIDLA2 outperformed ZSL in a fine-grained classification task in which determining subtle differences among alcoholic beverages (including containers) are essential. We also found that phrase engineering is essential for improving the performance of ZSL. To conclude, like ABIDLA2, ZSL with little phrase engineering can achieve promising performance in identifying alcohol exposure in images. This makes it easier for researchers, with little or no programming background, to implement ZSL effectively to obtain insightful analytics from digital media. Such analytics can assist researchers and policy makers to propose regulations that can prevent alcohol exposure and eventually prevent alcohol consumption.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10363523PMC
http://dx.doi.org/10.1038/s41598-023-39169-4DOI Listing

Publication Analysis

Top Keywords

alcohol exposure
16
zero-shot learning
8
alcohol
8
deep learning
8
learning algorithm
8
alcohol consumption
8
alcoholic beverages
8
three tasks
8
phrase engineering
8
prevent alcohol
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!