Dystonia genes and their biological pathways.

Int Rev Neurobiol

Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany; Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany. Electronic address:

Published: July 2023

High-throughput sequencing has been instrumental in uncovering the spectrum of pathogenic genetic alterations that contribute to the etiology of dystonia. Despite the immense heterogeneity in monogenic causes, studies performed during the past few years have highlighted that many rare deleterious variants associated with dystonic presentations affect genes that have roles in certain conserved pathways in neural physiology. These various gene mutations that appear to converge towards the disruption of interconnected cellular networks were shown to produce a wide range of different dystonic disease phenotypes, including isolated and combined dystonias as well as numerous clinically complex, often neurodevelopmental disorder-related conditions that can manifest with dystonic features in the context of multisystem disturbances. In this chapter, we summarize the manifold dystonia-gene relationships based on their association with a discrete number of unifying pathophysiological mechanisms and molecular cascade abnormalities. The themes on which we focus comprise dopamine signaling, heavy metal accumulation and calcifications in the brain, nuclear envelope function and stress response, gene transcription control, energy homeostasis, lysosomal trafficking, calcium and ion channel-mediated signaling, synaptic transmission beyond dopamine pathways, extra- and intracellular structural organization, and protein synthesis and degradation. Enhancing knowledge about the concept of shared etiological pathways in the pathogenesis of dystonia will motivate clinicians and researchers to find more efficacious treatments that allow to reverse pathologies in patient-specific core molecular networks and connected multipathway loops.

Download full-text PDF

Source
http://dx.doi.org/10.1016/bs.irn.2023.04.009DOI Listing

Publication Analysis

Top Keywords

dystonia genes
4
genes biological
4
pathways
4
biological pathways
4
pathways high-throughput
4
high-throughput sequencing
4
sequencing instrumental
4
instrumental uncovering
4
uncovering spectrum
4
spectrum pathogenic
4

Similar Publications

The pathophysiology of dystonia in Wilson disease (WD) is complex and poorly understood. Copper accumulation in the basal ganglia, disrupts dopaminergic pathways, contributing to dystonia's development via neurotransmitter imbalance. Despite advances in diagnosis and management, WD with dystonia remains a challenging condition to treat.

View Article and Find Full Text PDF

Background: Variants in the gene, encoding guanosine triphosphate cyclohydrolase, are associated with dopa-responsive dystonia (DRD) and are considered risk factors for parkinson's disease.

Methods: Comprehensive neurological assessments documented motor and non-motor symptoms in a Chinese family affected by DRD. Whole-exome sequencing (WES) was employed to identify potential mutations, with key variants confirmed by Sanger sequencing and analyzed for familial co-segregation.

View Article and Find Full Text PDF

Genomic characterization of Huntington's disease genetic modifiers informs drug target tractability.

Brain Commun

January 2025

Department of Pharmacology and Therapeutics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, CanadaR3E 0T6.

Huntington's disease is caused by a CAG repeat in the gene. Repeat length correlates inversely with the age of onset but only explains part of the observed clinical variability. Genome-wide association studies highlight DNA repair genes in modifying disease onset, but further research is required to identify causal genes and evaluate their tractability as drug targets.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to identify genomic variations linked to dystonia in the Asian Indian population using next-generation sequencing.
  • A total of 745 individuals were enrolled, and whole exome sequencing (WES) was performed on 267 patients, revealing pathogenic variants in 20.2% of them, including 14 novel variants.
  • The gene THAP1 was found to be the most common associated with dystonia, and factors like multifocal/generalized distribution and family history increased the likelihood of finding positive results from WES.
View Article and Find Full Text PDF

Aicardi-Goutières syndrome (AGS) is a rare monogenic type I interferonopathy. Janus kinase (JAK) inhibition has emerged as a potential treatment for AGS. RNU7-1 is one of the most recently discovered genes for AGS, and the clinical effects of JAK inhibition in these patients have not been reported.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!